

ERTEC 200

Enhanced Real-Time Ethernet Controller

Manual

Edition (07/2010)

Disclaimer of Liability

We have checked the contents of this manual for agreement with the hardware and software described. Since deviations cannot be precluded entirely, we cannot guarantee full agreement. However, the data in this manual are reviewed regularly. Necessary corrections are included in subsequent editions. Suggestions for improvement are welcomed.

Copyright

© Siemens AG 2010. All rights reserved

The reproduction, transmission or use of this document or its contents is not permitted without express written authority. Offenders will be liable for damages. All rights, including rights created by patent grant or registration of a utility model or design, are reserved.

All product and system names are registered trademarks of their respective owner and must be treated as such.

Technical data subject to change.

Preface

Target Audience of this Manual

This manual is intended for hardware developers who want to use the ERTEC 200 for new products. Experience working with processors and designing embedded systems and knowledge of Ethernet are required for this. It described all ERTEC function groups in details and provides information that you must take into account when configuring your own PROFINET IO device hardware.

The manual serves as a reference for software developers. The address areas and register contents are described in detail for all function groups.

Structure of this Manual

- Section 1 Overview of the architecture and the individual function groups of the ERTEC 200.
- Section 2 ARM946E-S processor systems.
- Section 3 Bus system of the ERTEC 200.
- Section 4 I/O of the ERTEC 200.
- Section 5 General hardware functions.
- Section 6 External memory interface (EMIF).
- Section 7 Local bus unit (LBU).
- o Section 8 DMA controller
- Section 9 Ethernet PHYs
- Section 10 Memory partitioning of the ERTEC 200.
- o Section 11 HW tools for test, trace, and debugging.
- Section 12 List of terms and references

This manual will be updated as required. You can find the current version of the manual on the Internet at http://www.siemens.com/comdec.

Guide

To help you quickly find the information you need, this manual contains the following aids:

- A complete table of contents as well as a list of all figures and tables in the manual are provided at the beginning of the manual.
- A glossary containing definitions of important terms used in the manual is located following the appendices.
- References to other documents are indicated by the document reference number enclosed in slashes (/No./). The complete title of the document can be obtained from the list of references at the end of the manual.

Additional Support

PO Box 4991

Johnson City, TN 37602-4991

If you have questions regarding use of the described block that are not addressed in the documentation, please contact your Siemens representative.

Please send your written questions, comments, and suggestions regarding the manual to the hotline via the e-mail address indicated above.

In addition, you can receive general information, current product information, FAQs, and downloads pertaining to your application on the Internet at:

http://www.siemens.com/comdec

Technical Contacts for Germany / Worldwide

Siemens AG Automation & Drives ComDeC	Phone: 0911/750-2736 Phone: 0911/750-2080 Fax: 0911/750-2100 E-mail: ComDeC@siemens.com
Street address:	Mailing address:
Würzburgerstr.121	P.O. Box 2355
90766 Fürth Federal Republic of Germany	90713 Fürth Federal Republic of Germany
Technical Contacts for USA	
PROFI Interface Center: One Internet Plaza	Fax: (423)- 262- 2103 Phone: (423)- 262- 2576

4

E-mail: profibus.sea@siemens.com

Contents

1		oduction	
		ications of the ERTEC 200	
		ures of the ERTEC 200	
		cture of the ERTEC 200	
		EC 200 Package	
	-	al Function Description	11
	1.5.1	GPIO 0 to 31 and Alternative Functions	11
	1.5.2 1.5.3	JTAG and Debug Trace Port	
	1.5.4	Clock and Reset	
	1.5.5	Test Pins	
	1.5.6	EMIF (External Memory Interface).	13
	1.5.7	LBU, MII Interface or ETM Trace Interface	15
	1.5.8	Ethernet PHY1 and PHY2	17
	1.5.9	Power Supply	18
2	UAF	RM946E-S Processor	20
_		cture of ARM946E-S	
		cription of ARM946E-S	
		rating Frequency of ARM946E-S	
		ne Structure of ARM946E-S	
2.5		tly Coupled Memory (TCM)	
2.6	6 Mem	nory Protection Unit (MPU)	22
2.7	7 Bus	Interface of ARM946E-S	22
2.8	3 ARM	1946E-S Embedded Trace Macrocell (ETM9)	22
		I Interrupt Controller (ICU)	22
	2.9.1	Prioritization of Interrupts	23
	2.9.2	Trigger Modes	
	2.9.3 2.9.4	Masking the Interrupt Inputs	
	2.9.4	Nested Interrupt Structure	
	2.9.6	EOI End-Of-Interrupt	
	2.9.7	IRQ Interrupt Sources.	
	2.9.8	FIQ Interrupt Sources	
:	2.9.9	IRQ Interrupts as FIQ Interrupt Sources	
		Interrupt Control Register	
		ICU Register Description	
2.1		1946E-S Register	
3		System of the ERTEC 200	
3.1	1 "Mul	tilayer AHB" Communication Bus	31
	3.1.1	AHB Arbiter	
	3.1.2	AHB Master-Slave Coupling	
3.2		I/O Bus	
4	I/O o	on APB bus	32
4.1	I BOC	DT ROM	32
	4.1.1	Booting from External ROM	
	4.1.2	Booting via SPI	
	4.1.3	Booting via UART	
	4.1.4	Booting via LBU	
	4.1.5	Memory Swapping	
	2 Gen 4.2.1	eral Purpose I/O (GPIO) Address Assignment of GPIO Registers	34 25
	4.2.1 4.2.2	GPIO Register Description	
		or 0/1/2	
	4.3.1	Timer 0 and Timer 1	
	4.3.1		
	4.3.1	.2 Timer 0/1 Prescaler	38
	4.3.1	.3 Cascading of Timers 0/1	38
	4.3.2	Timer 2	
	4.3.3	Address Assignment of Timer Registers	
	4.3.4	Timer Register Description	
		ner Function	
	4.4.1 4.4.2	Address Assignment of F-Timer Registers	
		chdog Timers	
	4.5.1	Watchdog Timer 0	

	.5.2 Watchdog Timer 1	
	 4.5.3 Watchdog Interrupt 4.5.4 WDOUT0 N 	
	4.5.5 WDOUT1_N	
4	.5.6 Watchdog Registers	45
	.5.7 Address Assignment of Watchdog Registers	
	UART Interface	
	.6.1 Address Assignment of UART Registers	
	4.6.2 UART Register Description.	
	Synchronous Interface SPI	
	 Address Assignment of SPI Register SPI Register Description 	
-	System control register	
	4.8.1 Address Assignment of System Control Registers	
4	.8.2 System Control Register Description	
5	General Hardware Functions	63
5.1	Clock Generation and Clock Supply	
-	5.1.1 Clock Supply in ERTEC 200	63
-	.1.2 JTAG Clock Supply .1.3 Clock Supply for PHYs and Ethernet MACs	64
	Reset Logic of the ERTEC 200	
	5.2.1 PowerOn reset	64
-	.2.2 Hardware Reset	
-	 Watchdog Reset Software reset 	
-	5.2.5 IRT Switch Reset	
5.3	Address Space and Timeout Monitoring	66
-	.3.1 AHB Bus Monitoring	
-	5.3.2 APB Bus Monitoring 5.3.3 EMIF Monitoring	
-	Configuration Options on the ERTEC 200	
6	External Memory Interface (EMIF)	
	Address Assignment of EMIF Registers	
	EMIF Register Description	
		69
6.2 7	EMIF Register Description	69 73
6.2 7 7.1 7.2	EMIF Register Description Local Bus Unit (LBU). Page Range Setting Page Offset Setting	69 73 75 75
6.2 7 7.1 7.2 7.3	EMIF Register Description Local Bus Unit (LBU). Page Range Setting. Page Offset Setting. LBU Address Mapping.	69 73 75 75 76
6.2 7 7.1 7.2 7.3 7.4	EMIF Register Description Local Bus Unit (LBU). Page Range Setting. Page Offset Setting. LBU Address Mapping. Page Control Setting.	69 73 75 75 76 77
6.2 7 7.1 7.2 7.3 7.4 7.5	EMIF Register Description Local Bus Unit (LBU). Page Range Setting. Page Offset Setting. LBU Address Mapping. Page Control Setting. Host Access to the ERTEC200.	
6.2 7 7.1 7.2 7.3 7.4 7.5 7	EMIF Register Description Local Bus Unit (LBU). Page Range Setting Page Offset Setting LBU Address Mapping Page Control Setting Host Access to the ERTEC200 5.1 LBU Read from ERTEC 200 with separate Read/Write line (LBU_RDY_N active low) .5.2 LBU Write to ERTEC 200 with separate Read/Write line (LBU_RDY_N active low)	
6.2 7 7.1 7.2 7.3 7.4 7.5 7 7 7 7 7	EMIF Register Description Local Bus Unit (LBU). Page Range Setting. Page Offset Setting. LBU Address Mapping Page Control Setting. Host Access to the ERTEC200 7.5.1 LBU Read from ERTEC 200 with separate Read/Write line (LBU_RDY_N active low). 7.5.2 LBU Write to ERTEC 200 with separate Read/Write line (LBU_RDY_N active low). 7.5.3 LBU Read from ERTEC 200 with common Read/Write line (LBU_RDY_N active low).	
6.2 7 7.1 7.2 7.3 7.4 7.5 7 7 7 7 7 7	EMIF Register Description Local Bus Unit (LBU). Page Range Setting. Page Offset Setting. LBU Address Mapping Page Control Setting. Host Access to the ERTEC200 7.5.1 LBU Read from ERTEC 200 with separate Read/Write line (LBU_RDY_N active low). 7.5.2 LBU Write to ERTEC 200 with separate Read/Write line (LBU_RDY_N active low). 7.5.3 LBU Read from ERTEC 200 with common Read/Write line (LBU_RDY_N active low). 7.5.4 LBU Write to ERTEC 200 with common Read/Write line (LBU_RDY_N active low).	
6.2 7 7.1 7.2 7.3 7.4 7.5 7 7 7 7 7 7	EMIF Register Description Local Bus Unit (LBU). Page Range Setting. Page Offset Setting. LBU Address Mapping. Page Control Setting. Host Access to the ERTEC200. .5.1 LBU Read from ERTEC 200 with separate Read/Write line (LBU_RDY_N active low) .5.2 LBU Write to ERTEC 200 with separate Read/Write line (LBU_RDY_N active low) .5.3 LBU Read from ERTEC 200 with common Read/Write line (LBU_RDY_N active low) .5.4 LBU Write to ERTEC 200 with common Read/Write line (LBU_RDY_N active low) Host Interrupt Handling:	
6.2 7 7.1 7.2 7.3 7.4 7.5 7 7 7 7 7 6 7.7	EMIF Register Description Local Bus Unit (LBU). Page Range Setting. Page Offset Setting. LBU Address Mapping. Page Control Setting. Host Access to the ERTEC200. 7.5.1 LBU Read from ERTEC 200 with separate Read/Write line (LBU_RDY_N active low). 7.5.2 LBU Write to ERTEC 200 with separate Read/Write line (LBU_RDY_N active low). 7.5.3 LBU Read from ERTEC 200 with common Read/Write line (LBU_RDY_N active low). 7.5.4 LBU Write to ERTEC 200 with common Read/Write line (LBU_RDY_N active low). 7.5.4 LBU Write to ERTEC 200 with common Read/Write line (LBU_RDY_N active low). 7.5.4 LBU Write to ERTEC 200 with common Read/Write line (LBU_RDY_N active low). 7.5.4 LBU Write to ERTEC 200 with common Read/Write line (LBU_RDY_N active low).	
6.2 7 7.1 7.2 7.3 7.4 7.5 7 7 7 7 7 6 7.7	EMIF Register Description Local Bus Unit (LBU). Page Range Setting. Page Offset Setting. LBU Address Mapping. Page Control Setting. Host Access to the ERTEC200. 7.5.1 LBU Read from ERTEC 200 with separate Read/Write line (LBU_RDY_N active low). 7.5.2 LBU Write to ERTEC 200 with separate Read/Write line (LBU_RDY_N active low). 7.5.3 LBU Read from ERTEC 200 with common Read/Write line (LBU_RDY_N active low). 7.5.4 LBU Write to ERTEC 200 with common Read/Write line (LBU_RDY_N active low). 7.5.4 LBU Write to ERTEC 200 with common Read/Write line (LBU_RDY_N active low). 7.5.4 LBU Write to ERTEC 200 with common Read/Write line (LBU_RDY_N active low). 7.5.4 LBU Write to ERTEC 200 with common Read/Write line (LBU_RDY_N active low). 7.5.4 LBU Write to ERTEC 200 with common Read/Write line (LBU_RDY_N active low). Host Interrupt Handling: Address Assignment of LBU Registers	
6.2 7 7.1 7.2 7.3 7.4 7.5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	EMIF Register Description Local Bus Unit (LBU). Page Range Setting. Page Offset Setting. LBU Address Mapping. Page Control Setting. Host Access to the ERTEC200 2.5.1 LBU Read from ERTEC 200 with separate Read/Write line (LBU_RDY_N active low) 2.5.2 LBU Write to ERTEC 200 with separate Read/Write line (LBU_RDY_N active low) 2.5.3 LBU Read from ERTEC 200 with common Read/Write line (LBU_RDY_N active low) 2.5.4 LBU Write to ERTEC 200 with common Read/Write line (LBU_RDY_N active low) 2.5.4 LBU Write to ERTEC 200 with common Read/Write line (LBU_RDY_N active low) 4.5.4 LBU Write to ERTEC 200 with common Read/Write line (LBU_RDY_N active low) 5.4 LBU Write to ERTEC 200 with common Read/Write line (LBU_RDY_N active low) 5.4 LBU Write to ERTEC 200 with common Read/Write line (LBU_RDY_N active low) 4.5.4 LBU Write to ERTEC 200 with common Read/Write line (LBU_RDY_N active low) 5.5.4 LBU Write to ERTEC 200 with common Read/Write line (LBU_RDY_N active low) 5.5.4 LBU Write to ERTEC 200 with common Read/Write line (LBU_RDY_N active low) 4.5.5 LBU Register Description. DMA-Controller	
6.2 7 7.1 7.2 7.3 7.4 7.5 7 7 7 7 7 7 6 7.7 7.8 8 8.1	EMIF Register Description Local Bus Unit (LBU). Page Range Setting. Page Offset Setting. LBU Address Mapping. Page Control Setting. Host Access to the ERTEC200. 7.5.1 LBU Read from ERTEC 200 with separate Read/Write line (LBU_RDY_N active low) 7.5.2 LBU Write to ERTEC 200 with separate Read/Write line (LBU_RDY_N active low) 7.5.3 LBU Read from ERTEC 200 with common Read/Write line (LBU_RDY_N active low) 7.5.4 LBU Write to ERTEC 200 with common Read/Write line (LBU_RDY_N active low) 7.5.4 LBU Write to ERTEC 200 with common Read/Write line (LBU_RDY_N active low) 7.5.4 LBU Write to ERTEC 200 with common Read/Write line (LBU_RDY_N active low) 7.5.4 LBU Write to ERTEC 200 with common Read/Write line (LBU_RDY_N active low) 7.5.4 LBU Write to ERTEC 200 with common Read/Write line (LBU_RDY_N active low) 7.5.4 LBU Write to ERTEC 200 with common Read/Write line (LBU_RDY_N active low) 7.5.4 LBU Write to ERTEC 200 with common Read/Write line (LBU_RDY_N active low) 7.5.4 LBU Write to ERTEC 200 with common Read/Write line (LBU_RDY_N active low) 7.5.4 LBU Write to ERTEC 200 with common Read/Write line (LBU_RDY_N active low) 7.5.4 LBU Write to ERTEC 200 with common Read/Write line (LBU_RDY_N active low) 7.5.4 LBU Write to ERTEC 200 with common Read/Write line (LBU_RDY_N active low) 7.5.4 LBU Write to ERTEC 200 with common Read/Write line (LBU_RDY_N active low) 7.5.4 LBU Write to ERTEC 200 with common Read/Write line (LBU_RDY_N active low) 7.5.4 LBU Register Description	
6.2 7 7.1 7.2 7.3 7.4 7.5 7 7 7 7 7 7 6 7.7 7.8 8 8.1	EMIF Register Description Local Bus Unit (LBU). Page Range Setting. Page Offset Setting. LBU Address Mapping. Page Control Setting. Host Access to the ERTEC200 2.5.1 LBU Read from ERTEC 200 with separate Read/Write line (LBU_RDY_N active low) 2.5.2 LBU Write to ERTEC 200 with separate Read/Write line (LBU_RDY_N active low) 2.5.3 LBU Read from ERTEC 200 with common Read/Write line (LBU_RDY_N active low) 2.5.4 LBU Write to ERTEC 200 with common Read/Write line (LBU_RDY_N active low) 2.5.4 LBU Write to ERTEC 200 with common Read/Write line (LBU_RDY_N active low) 3.5.4 LBU Write to ERTEC 200 with common Read/Write line (LBU_RDY_N active low) 4.5.4 LBU Write to ERTEC 200 with common Read/Write line (LBU_RDY_N active low) 5.5.4 LBU Register Description. DMA-Controller DMA Register Address Assignment.	
6.2 7 7.1 7.2 7.3 7.4 7.5 7 7 7 7 7 7 7 7 7 8 8 8 8 8.1 8.2	EMIF Register Description Local Bus Unit (LBU). Page Range Setting. Page Offset Setting. LBU Address Mapping. Page Control Setting. Host Access to the ERTEC200 5.1 LBU Read from ERTEC 200 with separate Read/Write line (LBU_RDY_N active low) 	
6.2 7 7.1 7.2 7.3 7.4 7.5 7 7 7 7 7 6 7.7 7.8 8 8 8 8 8 9 10	EMIF Register Description Local Bus Unit (LBU). Page Range Setting. Page Offset Setting. LBU Address Mapping. Page Control Setting. Host Access to the ERTEC200. 7.5.1 LBU Read from ERTEC 200 with separate Read/Write line (LBU_RDY_N active low). 7.5.2 LBU Write to ERTEC 200 with separate Read/Write line (LBU_RDY_N active low). 7.5.3 LBU Read from ERTEC 200 with common Read/Write line (LBU_RDY_N active low). 7.5.4 LBU Write to ERTEC 200 with common Read/Write line (LBU_RDY_N active low). 7.5.4 LBU Write to ERTEC 200 with common Read/Write line (LBU_RDY_N active low). 8.5.4 LBU Write to ERTEC 200 with common Read/Write line (LBU_RDY_N active low). 9.5.4 LBU Write to ERTEC 200 with common Read/Write line (LBU_RDY_N active low). 9.5.4 LBU Write to ERTEC 200 with common Read/Write line (LBU_RDY_N active low). 9.5.4 LBU Register Description. Modress Assignment of LBU Registers LBU Register Description. DMA Register Address Assignment. Description of DMA Registers Description of DMA Registers Multiport Ethernet PHY Memory Description Memory Description	
6.2 7 7.1 7.2 7.3 7.4 7.5 7 7 7 7 7 7 7 7 8 8 8 8 8 8 9 10 10.	EMIF Register Description Local Bus Unit (LBU). Page Range Setting. Page Offset Setting. LBU Address Mapping. Page Control Setting. Host Access to the ERTEC200 5.1 LBU Read from ERTEC 200 with separate Read/Write line (LBU_RDY_N active low) 	
6.2 7 7.1 7.2 7.3 7.4 7.5 7 7 7 7 7 7 7 7 8 8 8 8 8 8 9 10 10.	EMIF Register Description Local Bus Unit (LBU). Page Range Setting Page Offset Setting Bus Address Mapping Page Control Setting Host Access to the ERTEC200 7.5.1 LBU Read from ERTEC 200 with separate Read/Write line (LBU_RDY_N active low) 7.5.2 LBU Write to ERTEC 200 with separate Read/Write line (LBU_RDY_N active low) 7.5.3 LBU Read from ERTEC 200 with common Read/Write line (LBU_RDY_N active low) 7.5.4 LBU Write to ERTEC 200 with common Read/Write line (LBU_RDY_N active low) 7.5.4 LBU Write to ERTEC 200 with common Read/Write line (LBU_RDY_N active low) 7.5.4 LBU Write to ERTEC 200 with common Read/Write line (LBU_RDY_N active low) 7.5.4 LBU Write to ERTEC 200 with common Read/Write line (LBU_RDY_N active low) 8.4 LBU Register Description 9.5 Motores Assignment of LBU Registers 1.5 LBU Register Address Assignment Description of DMA Registers DMARegister Address Assignment Description of DMA Registers Memory Description 1 Memory Partitioning of the ERTEC 200	
6.2 7 7.1 7.2 7.3 7.4 7.5 7 7 7 7.6 7.7 7.8 8 8 8.1 8.2 9 10 10.1 10.2 11	EMIF Register Description Page Range Setting Page Offset Setting LBU Address Mapping Page Control Setting Host Access to the ERTEC200 7.5.1 LBU Read from ERTEC 200 with separate Read/Write line (LBU_RDY_N active low) 7.5.2 LBU Write to ERTEC 200 with separate Read/Write line (LBU_RDY_N active low) 7.5.3 LBU Read from ERTEC 200 with common Read/Write line (LBU_RDY_N active low) 7.5.4 LBU Write to ERTEC 200 with common Read/Write line (LBU_RDY_N active low) 7.5.4 LBU Write to ERTEC 200 with common Read/Write line (LBU_RDY_N active low) 7.5.4 LBU Write to ERTEC 200 with common Read/Write line (LBU_RDY_N active low) 7.5.4 LBU Register Description Host Interrupt Handling: Address Assignment of LBU Registers LBU Register Description DMA-Controller DMA Register Address Assignment Description of DMA Registers Multiport Ethernet PHY Memory Description 1 Memory Partitioning of the ERTEC 200 2 Detailed Memory Description	
6.2 7 7.1 7.2 7.3 7.4 7.5 7 7 7 7 6 7.7 7 8 8 8 8 8 8 8 8 8 10 10.1 10.2 11 11.1	EMIF Register Description Local Bus Unit (LBU). Page Range Setting. Page Offset Setting. LBU Address Mapping. Page Control Setting. Host Access to the ERTEC200. 5.1 LBU Read from ERTEC 200 with separate Read/Write line (LBU_RDY_N active low). 5.2 LBU Write to ERTEC 200 with separate Read/Write line (LBU_RDY_N active low). 5.3 LBU Read from ERTEC 200 with common Read/Write line (LBU_RDY_N active low). 5.4 LBU Write to ERTEC 200 with common Read/Write line (LBU_RDY_N active low). 5.4 LBU Write to ERTEC 200 with common Read/Write line (LBU_RDY_N active low). Host Interrupt Handling: Address Assignment of LBU Registers LBU Register Description. DMA-Controller DMA Register Address Assignment. Description of DMA Registers. Multiport Ethernet PHY Memory Description 1 Memory Description 1 Memory Description 1 Memory Description 1 Test and Debugging 1 Trace Modes.	
6.2 7 7.1 7.2 7.3 7.4 7.5 7 7 7 7 7 6 7 7 7 8 8 8 8 8 8 8 8 10 10.3 10.3 11 11.1 1 11.1	EMIF Register Description Local Bus Unit (LBU). Page Range Setting. Page Offset Setting. LBU Address Mapping. Page Control Setting. Host Access to the ERTEC200. 5.1 LBU Read from ERTEC 200 with separate Read/Write line (LBU_RDY_N active low) 5.2 LBU Write to ERTEC 200 with common Read/Write line (LBU_RDY_N active low) 5.3 LBU Read from ERTEC 200 with common Read/Write line (LBU_RDY_N active low) 5.4 LBU Write to ERTEC 200 with common Read/Write line (LBU_RDY_N active low) .5.4 LBU Write to ERTEC 200 with common Read/Write line (LBU_RDY_N active low) .5.4 LBU Write to ERTEC 200 with common Read/Write line (LBU_RDY_N active low) .5.4 LBU Write to ERTEC 200 with common Read/Write line (LBU_RDY_N active low) .5.4 LBU Register Address Assignment of LBU Registers LBU Register Description DMA-Controller DMA Register Address Assignment. Description of DMA Registers Multiport Ethernet PHY Memory Description 1 Memory Description 1 Memory Description 2 Detailed Memory Description 1 Trace Macrocell. 1.1.1 Trace Macrocell. </td <td></td>	
6.2 7 7.1 7.2 7.3 7.4 7.5 7 7 7 7 7 7 7 7 6 7 7 7 8 8 8 8 8 8 8 8	EMIF Register Description Local Bus Unit (LBU) Page Range Setting Page Offset Setting Page Offset Setting Page Control Setting Host Access to the ERTEC200 .5.1 LBU Read from ERTEC 200 with separate Read/Write line (LBU_RDY_N active low) .5.2 LBU Write to ERTEC 200 with separate Read/Write line (LBU_RDY_N active low) .5.3 LBU Read from ERTEC 200 with common Read/Write line (LBU_RDY_N active low) .5.4 LBU Write to ERTEC 200 with common Read/Write line (LBU_RDY_N active low) .5.3 LBU Register Description .5.4 LBU Write to ERTEC 200 with common Read/Write line (LBU_RDY_N active low) .5.4 LBU Write to ERTEC 200 with common Read/Write line (LBU_RDY_N active low) .5.4 LBU Register	
6.2 7 7.1 7.2 7.3 7.4 7.5 7 7 7 7 7 6 7.7 7 8 8 8 8 8 8 8 8 10 10.1 10.1 10.1 11.1 11	EMIF Register Description Local Bus Unit (LBU). Page Range Setting. Page Offset Setting. LBU Address Mapping. Page Control Setting. Host Access to the ERTEC200. 5.1 LBU Read from ERTEC 200 with separate Read/Write line (LBU_RDY_N active low) 5.2 LBU Write to ERTEC 200 with common Read/Write line (LBU_RDY_N active low) 5.3 LBU Read from ERTEC 200 with common Read/Write line (LBU_RDY_N active low) 5.4 LBU Write to ERTEC 200 with common Read/Write line (LBU_RDY_N active low) .5.4 LBU Write to ERTEC 200 with common Read/Write line (LBU_RDY_N active low) .5.4 LBU Write to ERTEC 200 with common Read/Write line (LBU_RDY_N active low) .5.4 LBU Write to ERTEC 200 with common Read/Write line (LBU_RDY_N active low) .5.4 LBU Register Address Assignment of LBU Registers LBU Register Description DMA-Controller DMA Register Address Assignment. Description of DMA Registers Multiport Ethernet PHY Memory Description 1 Memory Description 1 Memory Description 2 Detailed Memory Description 1 Trace Macrocell. 1.1.1 Trace Macrocell. </td <td></td>	
6.2 7 7.1 7.2 7.3 7.4 7.5 7 7 7 7 7 6 7 7 7 8 8 8 8 8 8 8 8 10 10.2 10 10.2 11 11.2 11.2 11.2 11.2	EMIF Register Description Local Bus Unit (LBU) Page Range Setting Page Offset Setting Page Offset Setting Page Control Setting Host Access to the ERTEC200 5.1 LBU Read from ERTEC 200 with separate Read/Write line (LBU_RDY_N active low) .5.2 LBU Write to ERTEC 200 with separate Read/Write line (LBU_RDY_N active low) .5.3 LBU Read from ERTEC 200 with common Read/Write line (LBU_RDY_N active low) .5.4 LBU Write to ERTEC 200 with common Read/Write line (LBU_RDY_N active low) .5.4 LBU Write to ERTEC 200 with common Read/Write line (LBU_RDY_N active low) .5.4 LBU Write to ERTEC 200 with common Read/Write line (LBU_RDY_N active low) .5.4 LBU Write to ERTEC 200 with common Read/Write line (LBU_RDY_N active low) .5.4 LBU Write to ERTEC 200 with common Read/Write line (LBU_RDY_N active low) .5.4 LBU Register Description Modress Assignment of LBU Registers LBU Register Address Assignment	
6.2 7 7.1 7.2 7.3 7.4 7.5 7 7 7 7 7 6 7 7 7 8 8 8 8 8 8 8 8 10 10.2 10 10.2 11 11.2 11.2 11.2 11.2	EMIF Register Description Local Bus Unit (LBU). Page Range Setting. Page Offset Setting. Page Offset Setting. Page Control Setting. Host Access to the ERTEC200 25.1 LBU Read from ERTEC 200 with separate Read/Write line (LBU_RDY_N active low) 5.2 LBU Write to ERTEC 200 with separate Read/Write line (LBU_RDY_N active low) 5.3 LBU Read from ERTEC 200 with common Read/Write line (LBU_RDY_N active low) 5.4 LBU Write to ERTEC 200 with common Read/Write line (LBU_RDY_N active low) .5.4 LBU Write to ERTEC 200 with common Read/Write line (LBU_RDY_N active low) .5.4 LBU Write to ERTEC 200 with common Read/Write line (LBU_RDY_N active low) .5.4 LBU Write to ERTEC 200 with common Read/Write line (LBU_RDY_N active low) .5.4 LBU Write to ERTEC 200 with common Read/Write line (LBU_RDY_N active low) .5.4 LBU Write to ERTEC 200 with common Read/Write line (LBU_RDY_N active low) .5.4 LBU Register Address Assignment Description DMA Registers	

12.2 References:

List of Figures

Figure 1: ERTEC 200 Block Diagram	9
Figure 2: ERTEC 200 Package Description	
Figure 3: Structure of ARM946E-S Processor System	
Figure 4: GPIO Cell on GPIO Port [31:0] of the ERTEC 200	
Figure 5: Block Diagram of F-Counter.	42
Figure 6: Watchdog Timing	
Figure 7: Block Diagram of UART	
Figure 8: Block Diagram of SPI	
Figure 9: Clock Generation in ERTEC 200	63
Figure 10: Clock Supply of Ethernet Interface	64
Figure 11: Power-Up Phase of the PLL	
Figure 12: Interconnection of Addresses between Host and ERTEC 200 LBU	76
Figure 13: LBU-Read-Sequence with separate RD/WR line	78
Figure 14: LBU-Write-Sequence with separate RD/WR line	79
Figure 15: LBU-Read-Sequence with common RD/WR line	80
Figure 16: LBU-Write-Sequence with common RD/WR line	81

List of Tables

Table 1: ERTEC 200 Pin Assignment and Signal Description	
Table 2: Overview of IRQ Interrupts	
Table 3: Overview of FIQ Interrupts	
Table 4: Overview of Interrupt Control Register	
Table 5: CP15 Registers - Overview	
Table 6: Overview of AHB Master-Slave Access	
Table 7: Access Type and Data Width of the I/O	
Table 8: Selection of Download Source	
Table 9: Overview of GPIO Registers	
Table 10: Overview of Timer Registers	
Table 11: Overview of F-Timer Registers	
Table 12: Overview of WD Registers	
Table 13: Baud Rates for UART at FUARTCLK=50 MHz	48
Table 14: Overview of UART Registers	
Table 15: Overview of SPI Registers	
Table 16: Overview of System Control Registers	
Table 17: Overview of ERTEC 200 Clocks	
Table 18: Configurations for ERTEC 200	
Table 19: Overview of EMIF Registers	
Table 20: Setting of Various Page Sizes	
Table 21: Setting of Various Offset Areas	75
Table 22: Address Mapping from the Perspective of an External Host Processor on the LBU Port	76
Table 23: Summary of Accesses to Address Areas of ERTEC 200	77
Table 24: Host Access to Address Areas of ERTEC 200	
Table 25: LBU Read access timing with seperate Read/Write line	
Table 26: LBU Write access timing with seperate Read/Write line	79
Table 27: LBU Read access timing with common Read/Write line	80
Table 28: LBU Write access timing with common Read/Write line	81
Table 29: Overview of LBU Registers	
Table 30: DMA Transfer Modes	
Table 31: I/O Synchronization Signals	
Table 32: Overview of DMA Registers	
Table 33: Partitioning of Memory Areas	
Table 34: Detailed Description of Memory Segments	92
Table 35: Pin Assignment of JTAG Interface	

Revisions:

Version Nr.	Date	Information
1.1.1	08/2008	First version
1.1.2	07/2010	Register MEM_SWAP

1 Introduction

The ERTEC 200 is intended for the implementation of PROFINET devices with RT and IRT functionality. With its integrated ARM946 processor and 2-port Ethernet switch with integrated PHYs and the option to connect an external host processor system to a local bus interface, it meets all the requirements for implementing PROFINET devices with integrated switch functionality.

1.1 Applications of the ERTEC 200

- Interface connection for high-precision drive control, including for PC-based systems
- Distributed I/O with real-time Ethernet interfacing
- PROFINET RT and IRT functionality

1.2 Features of the ERTEC 200

The ERTEC 200 is a high-performance Ethernet controller with the following integrated function groups:

- High-performance ARM 946 processor with D-cache, I-cache, D-TCM memory
- Multilayer AHB bus master/slave with AHB arbiter
- IRT switch with 64-Kbyte communication RAM
- 2 Ethernet channels with integrated PHYs
- Local Bus Unit (LBU) for connecting an external host processor (with boot capability)
- SDRAM controller
- SRAM controller
- DMA controller, 1-channel
- 45 IO, with assignable parameters
- UART (with boot capability)
- SPI (with boot capability)
- 3 timers
- F-timer
- Watchdog
- IRQ and FIQ interrupt controller
- PLL with clock generator
- 8 Kbytes of BOOT ROM
- 304-pin FBGA housing
- Different test functions
- JTAG debug and trace interface

1.3 Structure of the ERTEC 200

The figure below shows the function groups with the common communication paths.

ERTEC200

Figure 1: ERTEC 200 Block Diagram

1.4 ERTEC 200 Package

The ERTEC 200 is supplied in an FBGA package with 304 pins. The distance between the pins is 0.8 mm. The package dimensions are 19 mm x 19 mm.

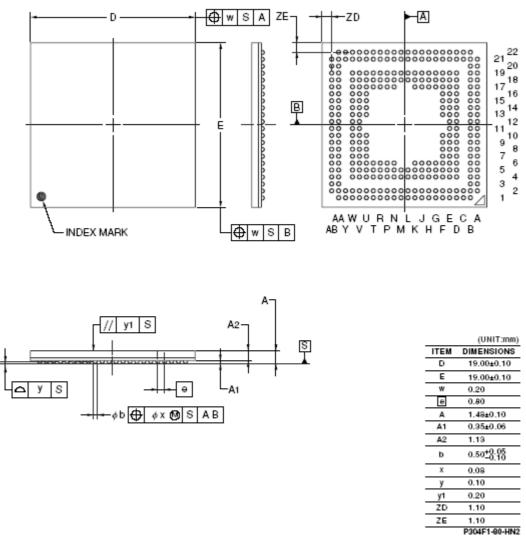


Figure 2: ERTEC 200 Package Description

Soldering instructions for the ERTEC 200 can be found in the following documents:

- /10/ Soldering instructions for lead-based block.
- /11/ Soldering instructions for lead-free block.

/12/ Code description for soldering.

When working with modules, **always take precautionary measures** against electrostatic charge (ESD – Electrostatic Sensitive Devices).

1.5 Signal Function Description

ERTEC 200 Pin Description

The ERTEC 200 Ethernet communication block is available in a 304-pin FBGA package. The signal names of the ERTEC 200 are described in this section.

1.5.1 GPIO 0 to 31 and Alternative Functions

Various signals are multiplexed on the same pin. These multiplexed signals can contain up to four different functions. The alternative functions are assigned in GPIO registers **GPIO_PORT_MODE_L** and **GPIO_PORT_MODE_H** (see Section 4.2.2). The table describes all signals with their different functions and associated pin numbers.

No.	Signal	Alternative	Alternative	Alternative	I/O	Pull-	PIN	Comment	
	Name	Function 1	Function 2	Function 3	(Reset)		No.		
General Purpose I/O / I/O									
1	GPIO0	P1-DUBLEX- LED_N			B/O/(I)	ир	D19	GPIO (interrupt- capable) or PHY-LED (O)	
2	GPIO1	P2-DUBLEX- LED_N			B/O/(I)	up	B20	GPIO (interrupt- capable) or PHY-LED (O)	
3	GPIO2	P1-SPEED_N- 100LED (TX/FX)			B/O/O/(I)	ир	D17	GPIO or PHY-LED (O)	
4	GPIO3	P2-SPEED- 100LED_N (TX/FX)			B/O/O/(I)	ир	B19	GPIO or PHY-LED (O)	
5	GPIO4	P1-LINK- LED_N			B/O/(I)	up	A19	GPIO or PHY-LED (O)	
6	GPIO5	P2-LINK- LED_N			B/O/(I)	up	D16	GPIO or PHY-LED (O)	
7	GPIO6	P1-RX-LED_N	P1-TX-LED_N	P1-ACTIVE- LED N	B/O/O/O/(I)	up	B18	GPIO or PHY-LED (O)	
8	GPIO7	P2-RX-LED_N	P2-TX-LED_N	P2-ACTIVE-	B/O/O/O/(I)	up	D15	GPIO or PHY-LED (O)	
9	GPIO8	UART-TXD			B/O/(I)	up	B17	GPIO or UART (O)	
10	GPIO9	UART-RXD			B/I (I)	up	A17	GPIO or UART (I)	
11	GPIO10	UART-DCD_N			B/I (I)	up	B16	GPIO or UART (I)	
12	GPIO11	UART-DSR_N			B/I (I)	up	E16	GPIO or UART (I)	
13	GPIO12	UART-CTS_N			B/I (I)	up	A16	GPIO or UART (I)	
14	GPIO13	Reserved			B/O/(I)	up	B15	GPIO	
15	GPIO14	DBGACK			B/O/(I)	up	E15	GPIO or DEBUG (O)	
16	GPIO15	WD_WDOUT0_ N			B/O/(I)	up	E14	GPIO or Watchdog (O)	
17	GPIO16	SPI1_SSPCTL OE			B/O/(I)	up	A13	GPIO or SPI1 (O)	
18	GPIO17	SPI1_SSPOE			B/O/(I)	up	F14	GPIO or SPI1 (O)	
19	GPIO18	SPI1_SSPRXD			B/I (I)	up	B12	GPIO or SPI1 (I)	
20	GPIO19	SPI1_SSPTXD			B/O/(I)	up	D13	GPIO or SPI1 (O)	
21	GPIO20	SPI1_SCLKOU			B/O/(I)	up	D11	GPIO or SPI1 (O)	
22	GPIO21	SPI1_SFRMOU			B/O/(I)	up	A11	GPIO or SPI1 (O)	

No.	Signal Name	Alternative Function 1	Alternative Function 2	Alternative Function 3	I/O (Reset)	Pull-	PIN No.	Comment		
	General Purpose I/O / I/O									
23	GPIO22	SPI1_SFRMIN	DBGACK		B/I/O/(I)	ир	F10	GPIO or SPI1 (I) or Debug (O) This GPIO is used as chip select when booting from Nand Flash or SPI ROM.		
24	GPIO23	SPI1_SCLKIN	Reserved		B/I/O/(I)	up	D10	GPIO or SPI1 (I) This GPIO is used as chip select when booting from SPI Flash or SPI EEPROM.		
25	GPIO24	PLL_EXT_IN_N			B/I (I)	up	B11	GPIO or MC_PLL (I)		
26	GPIO25	TGEN_OUT1_N *1			B/O/(I)	up	B9	GPIO or MC_PLL (O)		
27	GPIO26	TGEN_OUT2_N			B/O/(I)	up	A7	GPIO or MC_PLL (O)		
28	GPIO27	TGEN_OUT3_N			B/O/(I)	up	B10	GPIO or MC_PLL (O)		
29	GPIO28	TGEN_OUT4_N			B/O/(I)	up	F9	GPIO or MC_PLL (O)		
30	GPIO29	TGEN_OUT5_N			B/O/(I)	up	E9	GPIO or MC_PLL (O)		
31	GPIO30	TGEN_OUT6_N			B/O/(I)	up	B8	GPIO (interrupt- capable) or MC_PLL (O)		
32	GPIO31	DBGREQ			B/I (I)	up	E8	GPIO (interrupt- capable) or DEBUG (I)		

*1 For an IRT application pin GPIO25 is default parameterized as alternate function1 (TGEN_OUT1_N). A synchronous clock is issued at this pin. During the certification process of a PROFINET IO DEVICE with IRT functionality this pin has to be accessible from outside (mandatory).

Different GPIO's are used on the Evaluation Board EB200. See Dokument /14/ Table 6.

1.5.2 JTAG and Debug

No.	Signal Name	I/O (Reset)	Pull-	PIN No.	Comment
		Debug / JT/	AG (BOI	UNDAR	Y SCAN)
33	TRST_N	l (l)		U10	JTAG Reset
34	TCK	l (l)	up	W7	JTAG Clock
35	TDI	l (l)	up	U9	JTAG Data In
36	TMS	l (l)	up	V7	JTAG Test Mode Select
37	TDO	O (O)		V9	JTAG Data Out
38	SRST_N	B (O)	up	V8	Hardware Reset
39	TAP_SEL	l (l)	up	W8	Select TAP Controller:
					0: Boundary Scan TAP Controller
					selected
					1: ARM-TAP Controller selected
					or Scan Clock (Scan mode)

1.5.3 Trace Port

No.	Signal Name	I/O (Reset)	Pull-	PIN No.	Comment					
	Trace Port/Other									
40	TRACECLK	B (O)		AB4	ETM Trace Clock					
41	Reserved	I (I)	up	U19	Connect pin to GND					

1.5.4 Clock and Reset

No.	Signal Name	I/O (Reset)	Pull-	PIN No.	Comment
		CLOCK /	RESET	GENERA	TION
42	CLKP_A	l (l)		B14	Quartz connection
43	CLKP_B	0		D14	Quartz connection
44	F_CLK	l (l)		B13	F_CLK for F-counter
45	REF_CLK	Dependent on PIN CONFIG[1]		A15	Tristate or reference clock output, 25 MHz
46	RESET_N	l (l)	up	B7	PowerOn reset

1.5.5 Test Pins

No.	Signal Name	I/O (Reset)	Pull-	PIN No.	Comment						
	TEST										
47	TEST_N (3)	l (l)	up	T5	Test mode						
48	TMC1 (3)	l (l)		G5	Test configuration						
49	TMC2 (3)	I (I)		H6	Test configuration						
50	TACT_N (3)	l (l)	dn	J5	TESTACT-TAP reset						

1.5.6 EMIF (External Memory Interface)

No.	Signal Name	Alternative Reset Function	I/O (Reset)	Pull-	PIN No.	Comment						
	EMIF (External Memory Interface)											
51	DTR_N	BOOT0	B (I)	up	E7	Direction signal for external driver or scan clock (Scan mode) ERTEC 200 boot mode (external PD may be necessary)						
52	OE_DRIVER_N		O (O)		D8	Enable signal for external driver or scan clock (Scan mode)						
53	A0		O (O)		B4	Address bit 0 SDRAM: Bank address 0						
54	A1		O (O)		A3	Address bit 1 SDRAM: Bank address 1						
55	A2		O (O)		B3	Address bit 2 SDRAM: Address 0						
56	A3		O (O)		B2	Address bit 3 SDRAM: Address 1						
57	A4		O (O)		D4	Address bit 4 SDRAM: Address 2						
58	A5		O (O)		C2	Address bit 5 SDRAM: Address 3						
59	A6		O (O)		C1	Address bit 6 SDRAM: Address 4						
60	A7		O (O)		D2	Address bit 7 SDRAM: Address 5						
61	A8		O (O)		D1	Address bit 8 SDRAM: Address 6						
62	A9		O (O)		E2	Address bit 9 SDRAM: Address 7						
63	A10		O (O)		E1	Address bit 10 SDRAM: Address 8						
64	A11		O (O)		F2	Address bit 11 SDRAM: Address 9						
65	A12		0 (0)		F1	Address bit 12 SDRAM: Address 10						

No.	Signal Name	Alternative Reset Function	l/O (Reset)	Pull-	PIN No.	Comment
		EMIF (Ext	ernal Mem	ory Inte	rface)	
66	A13		O (O)		G2	Address bit 13 SDRAM: Address 11
67	A14		O (O)		G1	Address bit 14 SDRAM: Address 12
68	A15	BOOT1	B (I)	dn	H2	Address bit 15 ERTEC 200 boot mode (ext. PU may be necessary)
69	A16	BOOT2	B (I)	dn	J2	Address bit 16 / ERTEC 200 boot mode (ext. PU may be necessary)
70	A17	BOOT3	B (I)	up	К2	Address bit 17 / ERTEC 200 boot mode (ext. PD may be necessary)
71	A18	CONFIG1	B (I)	up	K1	Address bit 18 / ERTEC 200 system configuration (external PD may be necessary)
72	A19	CONFIG2	B (I)	up	E4	Address bit 19 / ERTEC 200 system configuration (external PD may be necessary)
73	A20	CONFIG3	B (I)	dn	F4	Address bit 20 / ERTEC 200 system configuration (external PU may be necessary)
74	A21	CONFIG4	B (I)	up	G4	Address bit 21 / ERTEC 200 system configuration (external PD may be necessary)
75	A22	CONFIG5	B (I)	dn	H5	Address bit 22 / ERTEC 200 system configuration (external PU may be necessary)
76	A23	CONFIG6	B (I)	up	H4	Address bit 23 / ERTEC 200 system configuration (external PD may be necessary)
77	D0		B (I)	up	M2	Data bit 0
78	D1		B (I)	up	N2	Data bit 1
79	D2		B (I)	up	P1	Data bit 2
80 81	D3 D4		B (I) B (I)	up	P2 R1	Data bit 3 Data bit 4
82	D4 D5		B (I)	up up	T2	Data bit 5
83	D6		B (I)	up	U1	Data bit 6
84	D7		B (I)	up	U2	Data bit 7
85	D8		B (I)	up	V2	Data bit 8
86	D9		B (I)	up	W1	Data bit 9
87	D10		B (I)	up	W2	Data bit 10
88	D11		B (I)	up	Y2	Data bit 11
89	D12		B (I)	up	AA1	Data bit 12
90	D13		B (I)	up	AA2	Data bit 13
91	D14		B (I)	up	AB2	Data bit 14
92	D15		B (I)	up	AA3	Data bit 15
93 94	D16 D17		B (I)	up	K4 K5	Data bit 16 Data bit 17
94 95	D17 D18		B (I) B (I)	up	J6	Data bit 17 Data bit 18
95 96	D18		В (I) В (I)	up up	56 K6	Data bit 19
97	D19		B (I)	up	N5	Data bit 19
98	D21		B (I)	up	N6	Data bit 21
99	D22		B (I)	up	P6	Data bit 22
100	D23		B (I)	up	R5	Data bit 23
101	D24		B (I)	up	R6	Data bit 24
102	D25		B (I)	up	P4	Data bit 25
103	D26		B (I)	up	R4	Data bit 26
104	D27		B (I)	up	T4	Data bit 27
105	D28		B (I)	up	U4	Data bit 28
106	D29		B (I)	up	W4	Data bit 29
107	D30		B (I)	up	W5	Data bit 30
108	D31		B (I)	up	W6	Data bit 31

No.	Signal Name	Alternative Reset Function	I/O (Reset)	Pull-	PIN No.	Comment						
	EMIF (External Memory Interface)											
109	WR_N		0 (0)		A4	Write strobe						
110	RD_N		0 (0)		B5	Read strobe						
111	CS_PER0_N		O (O)		D5	Chip Select Bank 1 (ROM); boot area						
112	CS_PER1_N		0 (0)		A5	Chip select bank 2						
113	CS_PER2_N		0 (0)		A6	Chip select bank 3						
114	CS_PER3_N		0 (0)		B6	Chip select bank 4						
115	BE0_DQM0_N		0 (0)		N4	Byte enable 0 for D(7:0)						
116	BE1_DQM1_N		0 (0)		V1	Byte enable 1 for D(15:8)						
117	BE2_DQM2_N		0 (0)		J4	Byte enable 2 for D(23:16)						
118	BE3_DQM3_N		0 (0)		P5	Byte enable 3 for D(31:24)						
119	RDY_PER_N		l (l)	up	D7	Ready signal						
120	CLK_SDRAM		B (O)		M1	Clock for SDRAM						
121	CS_SDRAM_N		0 (0)		L1	Chip-Select for SDRAM						
122	RAS_SDRAM_N		0 (0)		M5	RAS for SDRAM						
123	CAS_SDRAM_N		0 (0)		L2	CAS for SDRAM						
124	WE_SDRAM_N		0 (0)		M4	Write Enable for SDRAM						

1.5.7 LBU, MII Interface or ETM Trace Interface

LBU and GPIO[44:32] Config (6,5,2)=xx0bPHY Debug and GPIO[44:32] Config (6,5,2)=011bETM Trace and GPIO[44:32] Config (6,5,2)=101bReserved [6,5,2]=111b-No.125LBU_A0RXD_P10ETMEXTOUT (6,5,2)=011b[6,5,2]=111bup (ETM : 1)AB3LBU or MII or ETM (ETM : 1)126LBU_A1RXD_P11ETMEXTOUT (ETM : 1)1/O/O/I (ETM : 1)up (ETM : 1)AA4LBU or MII or ETM (ETM : 1)127LBU_A2RXD_P12TRACEPKT7 (ETM : 1)1/O/O/I (ETM : 1)up (AA5AA5LBU or MII or ETM (ETM : 1)128LBU_A3RXD_P13TRACEPKT6 (ETM : 1)1/O/O/I (ETM : 1)up (AA6AA6LBU or MII or ETM (ETM : 1)129LBU_A4CRS_P1TRACEPKT5 (ETM : 1)1/O/O/I (ETM : 1)up (AA6AA6LBU or MII or ETM (ETM : 1)130LBU_A6RX_DV_P1TRACEPKT3 (ETM : 1)1/O/O/I (UO/O/I (UP (ETM : 1))up (AA7AA7 LBU or MII or ETM (ETM : 1)131LBU_A6RX_DV_P1TRACEPKT2 (IA20/I)1/O/O/I (UO/O/I (UP (ETM : 1))up (AA7AA7 LBU or MII or ETM (ETM : 1)133LBU_A8RXD_P20TRACEPKT11/O/O/I (ETM : 1)up (AA8LBU or MII or ETM (ETM : 1)	No.	Function 1	Function 2	Function 3	Function 4	10	Pull	PIN	Comment		
Config (6,5,2)=xx0b GPIO[44:32] Config (6,5,2)=011b GPIO[44:32] (6,5,2)=101b Reserved (6,5,2)=11b Config (6,5,2)=11b 125 LBU_A0 RXD_P10 ETMEXTOUT I/O/O/I (ETM :)) up (AA4 AB3 LBU or MII or ETM (ETM :)) 126 LBU_A1 RXD_P10 ETMEXTOUT I/O/O/I (ETM :)) up (AA4 AB3 LBU or MII or ETM (ETM :)) 127 LBU_A2 RXD_P12 TRACEPKT7 I/O/O/I (ETM :)) up (AA5 AB5 LBU or MII or ETM (ETM :)) 128 LBU_A3 RXD_P13 TRACEPKT6 I/O/O/I (ETM :)) up (ETM :)) AA6 LBU or MII or ETM (ETM :)) 129 LBU_A4 CRS_P1 TRACEPKT5 I/O/O/I (ETM :)) up AA6 LBU or MII or ETM (ETM :)) 130 LBU_A5 RX_ER_P1 TRACEPKT4 I/O/O/I (ETM :)) up AA7 LBU or MII or ETM (ETM :)) 131 LBU_A6 RX_DP20 TRACEPKT2 I/O/O/I (D/O/I) up AB7 LBU or MII or ETM (ETM :)) 133 LBU_A8 RXD_P20 TRACEPKT0 I/O/O/I up AB8 LBU or MII or ETM (ETM : I)) <							-				
Config (6,5,2)=xx0b Config (6,5,2)=011b Config (6,5,2)=111b [6,5,2]=111b LBU / MII Interface/ ETM Trace Interface 125 LBU_A0 RXD_P10 ETMEXTOUT I/O(O/I (ETM :I) up AB3 LBU or MII or ETM (ETM :I) 126 LBU_A1 RXD_P11 ETMEXTOUT I/O(O/I (ETM :I) up AA4 LBU or MII or ETM (ETM :I) 127 LBU_A2 RXD_P12 TRACEPKT7 I/O(O/I (ETM :I) up AA5 LBU or MII or ETM (ETM :I) 128 LBU_A3 RXD_P13 TRACEPKT6 I/O(O/I (ETM :I) up AA5 LBU or MII or ETM (ETM :I) 129 LBU_A4 CRS_P1 TRACEPKT5 I/O(O/I (ETM :I) up AA6 LBU or MII or ETM (ETM :I) 130 LBU_A5 RX_ER_P1 TRACEPKT3 I/O(O/I (ETM :I) up AA6 LBU or MII or ETM (ETM :I) 131 LBU_A6 RX_DP20 TRACEPKT2 I/O(O/I (ETM :I) up AA7 LBU or MII or ETM (ETM :I) 133 LBU_A8 RXD_P21 TRACEPKT0 I/O(O/I (ETM :I) <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>											
(6,5,2)=xx0b (6,5,2)=011b (6,5,2)=101b [6,5,2]=111b (Construction of the state of t					Reserved						
LBU / MII Interface/ ETM Trace Interface 125 LBU / MII Interface/ ETM Trace Interface 126 LBU_A0 RXD_P10 ETMEXTOUT I/O/O/I up AB3 LBU or MII or ETM 126 LBU_A1 RXD_P11 ETMEXTIN1 I/O/I/I up AA4 LBU or MII or ETM 127 LBU_A2 RXD_P12 TRACEPKT7 I/O/O/I up AA5 LBU or MII or ETM 128 LBU_A3 RXD_P13 TRACEPKT6 I/O/O/I up AA5 LBU or MII or ETM 129 LBU_A4 CRS_P1 TRACEPKT5 I/O/O/I up AA6 LBU or MII or ETM 130 LBU_A5 RX_ER_P1 TRACEPKT3 I/O/O/I up AA6 LBU or MII or ETM 131 LBU_A6 RX_DP11 TRACEPKT3 I/O/O/I up AA7 LBU or MII or ETM 132 LBU_A7 COL_P1 TRACEPKT2 I/O/O/I up AA7 LBU or MII or ETM 133 LBU_A8 RXD_P20 TRACEPKT1 I/O/O/I						[6,5,2])					
125 LBU_A0 RXD_P10 ETMEXTOUT I/O/O/I (ETM : I) up AB3 LBU or MII or ETM (ETM : I) 126 LBU_A1 RXD_P11 ETMEXTIN1 I/O/I/I (ETM : I) up AA4 LBU or MII or ETM (ETM : I) 127 LBU_A2 RXD_P12 TRACEPKT7 I/O/O/I (ETM : I) up AA5 LBU or MII or ETM (ETM : I) 128 LBU_A3 RXD_P13 TRACEPKT6 I/O/O/I (ETM : I) up AB5 LBU or MII or ETM (ETM : I) 129 LBU_A4 CRS_P1 TRACEPKT5 I/O/O/I (ETM : I) up AA6 LBU or MII or ETM (ETM : I) 130 LBU_A5 RX_ER_P1 TRACEPKT3 I/O/O/I (ETM : I) up AA6 LBU or MII or ETM (ETM : I) 131 LBU_A6 RX_DV_P1 TRACEPKT3 I/O/O/I (UO/O/I up AA7 LBU or MII or ETM (ETM : I) 132 LBU_A7 COL_P1 TRACEPKT2 I/O/O/I up AA8 LBU or MII or ETM (ETM : I) 133 LBU_A8 RXD_P20 TRACEPKT0 I/O/O/I up <		(6,5,2)=xx0b	(6,5,2)=011b	(6,5,2)=101b							
Image: Constraint of the second sec		LBU / MII Interface/ ETM Trace Interface									
126 LBU_A1 RXD_P11 ETMEXTIN1 I/O/I/I (ETM : I) up I/O/O/I (ETM : I) AA4 LBU or MII or ETM 127 LBU_A2 RXD_P12 TRACEPKT7 I/O/O/I (ETM : I) up (ETM : I) AA5 LBU or MII or ETM 128 LBU_A3 RXD_P13 TRACEPKT6 I/O/O/I (ETM : I) up (ETM : I) AA5 LBU or MII or ETM 129 LBU_A4 CRS_P1 TRACEPKT5 I/O/O/I (ETM : I) up (ETM : I) AA6 LBU or MII or ETM 130 LBU_A5 RX_ER_P1 TRACEPKT4 I/O/O/I (ETM : I) up (ETM : I) AA6 LBU or MII or ETM 131 LBU_A6 RX_DP1 TRACEPKT3 I/O/O/I (ETM : I) up (AA7 LBU or MII or ETM (ETM : I) 132 LBU_A7 COL_P1 TRACEPKT2 I/O/O/I (O/O/I up (ETM : I) AA7 LBU or MII or ETM (ETM : I) 133 LBU_A8 RXD_P20 TRACEPKT0 I/O/O/I (ETM : I) up (AA8 LBU or MII or ETM (ETM : I) 134 LBU_A9 RXD_P22 TRACESYNC I/O/O/I (ETM : I) up AA9	125	LBU_A0	RXD_P10	ETMEXTOUT		I/O/O/I	up	AB3	LBU or MII or ETM		
Image: Constraint of the second sec						(ETM : I)					
127 LBU_A2 RXD_P12 TRACEPKT7 I/O/O/I (ETM : I) up AA5 LBU or MII or ETM (ETM : I) 128 LBU_A3 RXD_P13 TRACEPKT6 I/O/O/I (ETM : I) up AA5 LBU or MII or ETM (ETM : I) 129 LBU_A4 CRS_P1 TRACEPKT5 I/O/O/I (ETM : I) up AA6 LBU or MII or ETM (ETM : I) 130 LBU_A5 RX_ER_P1 TRACEPKT4 I/O/O/I (ETM : I) up AA6 LBU or MII or ETM (ETM : I) 131 LBU_A6 RX_DV_P1 TRACEPKT3 I/O/O/I (ETM : I) up AA7 LBU or MII or ETM (ETM : I) 132 LBU_A7 COL_P1 TRACEPKT2 I/O/O/I (ETM : I) up AA7 LBU or MII or ETM (ETM : I) 133 LBU_A8 RXD_P20 TRACEPKT1 I/O/O/I (ETM : I) up AA8 LBU or MII or ETM (ETM : I) 134 LBU_A9 RXD_P22 TRACEPKT0 I/O/O/I (ETM : I) up AA8 LBU or MII or ETM (ETM : I) 136 LBU_A11 RXD_P23 PIPESTA2 I/O/O/I (ETM : I)	126	LBU_A1	RXD_P11	ETMEXTIN1			up	AA4	LBU or MII or ETM		
Image: Constraint of the constra											
128 LBU_A3 RXD_P13 TRACEPKT6 I/O/O/I (ETM : I) up AB5 LBU or MII or ETM (ETM : I) 129 LBU_A4 CRS_P1 TRACEPKT5 I/O/O/I (ETM : I) up AA6 LBU or MII or ETM (ETM : I) 130 LBU_A5 RX_ER_P1 TRACEPKT4 I/O/O/I (ETM : I) up AA6 LBU or MII or ETM (ETM : I) 131 LBU_A6 RX_DV_P1 TRACEPKT3 I/O/O/I (ETM : I) up AA7 LBU or MII or ETM (ETM : I) 132 LBU_A7 COL_P1 TRACEPKT2 I/O/O/I (ETM : I) up AB7 LBU or MII or ETM (ETM : I) 133 LBU_A8 RXD_P20 TRACEPKT1 I/O/O/I (ETM : I) up AA8 LBU or MII or ETM (ETM : I) 134 LBU_A9 RXD_P21 TRACEPKT0 I/O/O/I (ETM : I) up AA8 LBU or MII or ETM (ETM : I) 135 LBU_A10 RXD_P22 TRACESYNC I/O/O/I (ETM : I) up AA9 LBU or MII or ETM (ETM : I) 136 LBU_A11 RXD_P22 PIPESTA2 I/O/O/I (ETM : I)	127	LBU_A2	RXD_P12	TRACEPKT7			up	AA5	LBU or MII or ETM		
Image: Construct of the second seco											
129LBU_A4CRS_P1TRACEPKT5I/O/O/I (ETM : I)upAA6LBU or MII or ETM130LBU_A5RX_ER_P1TRACEPKT4I/O/O/I (ETM : I)upAB6LBU or MII or ETM131LBU_A6RX_DV_P1TRACEPKT3I/O/O/I (ETM : I)upAA7LBU or MII or ETM132LBU_A7COL_P1TRACEPKT2I/O/O/I (ETM : I)upAA7LBU or MII or ETM133LBU_A8RXD_P20TRACEPKT1I/O/O/I (ETM : I)upAA8LBU or MII or ETM134LBU_A9RXD_P21TRACEPKT0I/O/O/I (ETM : I)upAA8LBU or MII or ETM135LBU_A10RXD_P22TRACESYNCI/O/O/I (ETM : I)upAA9LBU or MII or ETM136LBU_A11RXD_P23PIPESTA2I/O/O/I (ETM : I)upAA10LBU or MII or ETM138LBU_A13RX_ER_P2PIPESTA0I/O/O/I (ETM : I)upAA11LBU or MII or ETM	128	LBU_A3	RXD_P13	TRACEPK16			up	AB5	LBU or MII or ETM		
Image: Constraint of the constra	100		0.00 04	TRACERIZE							
130LBU_A5RX_ER_P1TRACEPKT4I/O/O/I (ETM : I)upAB6LBU or MII or ETM131LBU_A6RX_DV_P1TRACEPKT3I/O/O/I (ETM : I)upAA7LBU or MII or ETM132LBU_A7COL_P1TRACEPKT2I/O/O/I (ETM : I)upAB7LBU or MII or ETM133LBU_A8RXD_P20TRACEPKT1I/O/O/I (ETM : I)upAB7LBU or MII or ETM134LBU_A9RXD_P21TRACEPKT0I/O/O/I (ETM : I)upAA8LBU or MII or ETM135LBU_A10RXD_P22TRACESYNCI/O/O/I (ETM : I)upAA9LBU or MII or ETM136LBU_A11RXD_P23PIPESTA2I/O/O/I (ETM : I)upAA10LBU or MII or ETM137LBU_A12CRS_P2PIPESTA1I/O/O/I (ETM : I)upAA11LBU or MII or ETM138LBU_A13RX_ER_P2PIPESTA0I/O/O/I (ETM : I)upAA11LBU or MII or ETM	129	LBU_A4	CR5_PI	TRACEPKIS			up	AAb			
Image: Constraint of the constra	130		RY FR D1				un	ARG			
131LBU_A6RX_DV_P1TRACEPKT3I/O/O/I (ETM : I)upAA7LBU or MII or ETM132LBU_A7COL_P1TRACEPKT2I/O/O/I (ETM : I)upAB7LBU or MII or ETM133LBU_A8RXD_P20TRACEPKT1I/O/O/I (ETM : I)upAA8LBU or MII or ETM134LBU_A9RXD_P21TRACEPKT0I/O/O/I (ETM : I)upAB8LBU or MII or ETM135LBU_A10RXD_P22TRACESYNCI/O/O/I (ETM : I)upAA9LBU or MII or ETM136LBU_A11RXD_P23PIPESTA2I/O/O/I (ETM : I)upAA10LBU or MII or ETM137LBU_A12CRS_P2PIPESTA1I/O/O/I (ETM : I)upAA11LBU or MII or ETM138LBU_A13RX_ER_P2PIPESTA0I/O/O/I (ETM : I)upAA11LBU or MII or ETM	150	LDO_AJ		INACEPICIA			up	ADU			
Image: constraint of the second sec	131		BX DV P1	TRACEPKT3		、 、 、 、	up	۵۵7	L BU or MIL or ETM		
132LBU_A7COL_P1TRACEPKT2I/O/O/I (ETM : I)up (ETM : I)AB7LBU or MII or ETM (ETM : I)133LBU_A8RXD_P20TRACEPKT1I/O/O/I (ETM : I)up (ETM : I)AA8LBU or MII or ETM (ETM : I)134LBU_A9RXD_P21TRACEPKT0I/O/O/I (ETM : I)up (ETM : I)AB8LBU or MII or ETM (ETM : I)135LBU_A10RXD_P22TRACESYNCI/O/O/I (ETM : I)up (ETM : I)AA9LBU or MII or ETM (ETM : I)136LBU_A11RXD_P23PIPESTA2I/O/O/I (ETM : I)up (ETM : I)AA10LBU or MII or ETM (ETM : I)137LBU_A12CRS_P2PIPESTA1I/O/O/I (ETM : I)up (ETM : I)AB10LBU or MII or ETM (ETM : I)138LBU_A13RX_ER_P2PIPESTA0I/O/O/I (ETM : I)up (ETM : I)AA11LBU or MII or ETM (ETM : I)							-1-				
Image: constraint of the constra	132	LBU A7	COL P1	TRACEPKT2			up	AB7	LBU or MII or ETM		
Image: constraint of the second sec		-	—			(ETM : I)	•				
134LBU_A9RXD_P21TRACEPKT0I/O/O/I (ETM : I)up (ETM : I)AB8LBU or MII or ETM (ETM : I)135LBU_A10RXD_P22TRACESYNCI/O/O/I (ETM : I)up (ETM : I)AA9LBU or MII or ETM (ETM : I)136LBU_A11RXD_P23PIPESTA2I/O/O/I (ETM : I)up (ETM : I)AA10LBU or MII or ETM (ETM : I)137LBU_A12CRS_P2PIPESTA1I/O/O/I (ETM : I)up (ETM : I)AB10LBU or MII or ETM (ETM : I)138LBU_A13RX_ER_P2PIPESTA0I/O/O/I (ETM : I)up (ETM : I)AA11LBU or MII or ETM (ETM : I)	133	LBU_A8	RXD_P20	TRACEPKT1		I/O/O/I	up	AA8	LBU or MII or ETM		
Image: constraint of the second state of the secon						(ETM : I)					
135LBU_A10RXD_P22TRACESYNCI/O/O/I (ETM : I)up (ETM : I)AA9LBU or MII or ETM (ETM : I)136LBU_A11RXD_P23PIPESTA2I/O/O/I (ETM : I)up (ETM : I)AA10LBU or MII or ETM (ETM : I)137LBU_A12CRS_P2PIPESTA1I/O/O/I (ETM : I)up (ETM : I)AB10LBU or MII or ETM (ETM : I)138LBU_A13RX_ER_P2PIPESTA0I/O/O/I (ETM : I)up (ETM : I)AA11LBU or MII or ETM (ETM : I)	134	LBU_A9	RXD_P21	TRACEPKT0			up	AB8	LBU or MII or ETM		
Image: Constraint of the second sec											
136 LBU_A11 RXD_P23 PIPESTA2 I/O/O/I (ETM : I) up (ETM : I) AA10 LBU or MII or ETM LBU or MII or ETM (ETM : I) 137 LBU_A12 CRS_P2 PIPESTA1 I/O/O/I (ETM : I) up (ETM : I) AB10 LBU or MII or ETM (ETM : I) 138 LBU_A13 RX_ER_P2 PIPESTA0 I/O/O/I (ETM : I) up (ETM : I) AA11 LBU or MII or ETM (ETM : I)	135	LBU_A10	RXD_P22	TRACESYNC			up	AA9	LBU or MII or ETM		
Image: Construction CRS_P2 PIPESTA1 I/O/O/I (ETM : I) up (ETM : I) AB10 LBU or MII or ETM (ETM : I) 138 LBU_A13 RX_ER_P2 PIPESTA0 I/O/O/I (ETM : I) up (AA11) LBU or MII or ETM (ETM : I)											
137 LBU_A12 CRS_P2 PIPESTA1 I/O/O/I up AB10 LBU or MII or ETM 138 LBU_A13 RX_ER_P2 PIPESTA0 I/O/O/I up AA11 LBU or MII or ETM	136	LBU_A11	RXD_P23	PIPESTA2			up	AA10	LBU or MII or ETM		
Image: Constraint of the second sec	107							4040			
138 LBU_A13 RX_ER_P2 PIPESTA0 I/O/O/I up AA11 LBU or MII or ETM (ETM : I) I/O/O/I I/O/O/I II/O/O/I II/O/O/I <td< td=""><td>137</td><td>LBU_A12</td><td>CHS_P2</td><td>PIPESTAT</td><td></td><td></td><td>up</td><td>AB10</td><td></td></td<>	137	LBU_A12	CHS_P2	PIPESTAT			up	AB10			
(ETM : I)	120		DY ED DO					A A 1 1			
	130	LOU_AIS	na_cn_f2	FIFESTAU			up	AATT			
	139		BX DV P2				un	4 R11	I BU or MII		
	.55						40				
140 LBU_A15 COL_P2 I/O/I/I up W11 LBU or MII	140	LBU A15	COL P2			I/O/I/I	up	W11	LBU or MII		
							- 14				

No.	Function 1 LBU	Function 2 PHY Debug	Function 3 ETM Trace	Function 4	IO (Reset	Pull	PIN No.	Comment
	LDO	and	and		See		NO.	
	Config	GPIO[44:32] Config	GPIO[44:32] Config	Reserved	Config [6,5,2])			
	(6,5,2)=xx0b	(6,5,2)=011b	(6,5,2)=101b	[6,5,2]=111b U / MII-Interfac				
		001000	1		7		14/0	
141	LBU_A16	GPIO32	GPIO32		I/B/B/B (GPIO:I)	up	W9	LBU or GPIO
142	LBU_A17	GPIO33	GPIO33		I/B/B/B (GPIO:I)	up	W10	LBU or GPIO
143	LBU_A18	GPIO34	GPIO34		I/B/B/B (GPIO:I)	up	V10	LBU or GPIO
144	LBU_A19	GPIO35	GPIO35		I/B/B/B (GPIO:I)	up	W12	LBU or GPIO
145	LBU_A20	GPIO36	GPIO36		I/B/B/B (GPIO:I)	up	V12	LBU or GPIO
146	LBU_SEG_0	GPIO37	GPIO37		I/B/B/B (GPIO:I)	up	V13	LBU or GPIO
147	LBU_SEG_1	GPIO38	GPIO38		I/B/B/B (GPIO:I)	up	U13	LBU or GPIO
148	LBU_WR_N	TX_CLK_P1			I/O/I/I	up	AA12	LBU or MII LBU-Mode: CONFIG[5] = 0 Write Control (Low-Active) CONFIG[5] = 1 RD/WR Control (WR=0/RD=1)
149	LBU_RD_N	TX_CLK_P2			I/O/I/I	ир	AB13	LBU or MII LBU-Mode: CONFIG[5] = 0 Read Control (Low Active) CONFIG[5] = 1
150	LBU_CS_R_ N	GPIO39	GPIO39		I/B/B/B (GPIO : I)	up	AB12	LBU or GPIO LBU-Mode: CS for paging configuration register
151	LBU_CS_M_ N	GPIO40	GPIO40		I/B/B/B (GPIO : I)	up	U14	LBU or GPIO <u>LBU-Mode:</u> CS for ERTEC 200 resources
152	LBU_BE0_N	RX_CLK_P1			I/O/I/I	up	AB14	LBU or MII
153	LBU_BE1_N	RX_CLK_P2			I/O/I/I	up	AA13	LBU or MII
154	LBU_D0	TXD_P10			B/O/I/O (LBU : I)	up	AA14	LBU or MII
155	LBU_D1	TXD_P11			B/O/I/O (LBU : I)	up	W15	LBU or MII
156	LBU_D2	TXD_P12			B/O/I/O (LBU : I)	up	AB16	LBU or MII
157	LBU_D3	TXD_P13			B/O/I/O (LBU : I)	up	AA16	LBU or MII
158	LBU_D4	TX_EN_P1			B/O/I/O (LBU : I)	up	AB17	LBU or MII
159	LBU_D5	TX_ERR_P1			B/O/I/O (LBU : I)	up	AA17	LBU or MII
160	LBU_D6	TXD_P20			B/O/I/O (LBU : I)	up	AB18	LBU or MII
161	LBU_D7	TXD_P21			B/O/I/O (LBU : I)	up	AA18	LBU or MII
162	LBU_D8	TXD_P22			B/O/I/O (LBU : I)	up	AB19	LBU or MII
163	LBU_D9	TXD_P23			B/O/I/O (LBU : I)	up	AA19	LBU or MII
164	LBU_D10	TX_EN_P2			B/O/I/O (LBU : I)	up	AA20	LBU or MII
165	LBU_D11	TX_ERR_P2			B/O/I/O (LBU : I)	up	AB21	LBU or MII

No.	Function 1 LBU Config (6,5,2)=xx0b	Function 2 PHY Debug and GPIO[44:32] Config (6,5,2)=011b	Function 3 ETM Trace and GPIO[44:32] Config (6,5,2)=101b	Function 4 Reserved [6,5,2]=111b	IO (Reset See Config [6,5,2])	Pull -	PIN No.	Comment		
	LBU / MII-Interface									
166	LBU_D12	SMI_MDC			B/O/I/O (LBU : I)	up	W14	LBU or MII		
167	LBU_D13	SMI_MDIO			B/O/I/O (LBU : I)	up	V15	LBU or MII		
168	LBU_D14	RES_PHY_N			B/O/I/O (LBU : I)	up	V16	LBU or MII		
169	LBU_D15	GPIO41	GPIO41		B/B/B/B (GPIO:I) (LBU : I)	up	W16	LBU or GPIO		
170	LBU_RDY_N	GPIO42	GPIO42		O/B/B/B (GPIO:I)	up	W19	LBU or GPIO <u>LBU-Mode:</u> LBU_RDY signal: Polarity depends on Input CONFIG[6]; Output active while LBU_CS_R/M_N is active		
171	LBU_IRQ0_N	GPIO43	GPIO43		O/B/B/B (GPIO:I)	up	AA21	LBU or GPIO <u>LBU-Mode:</u> Low-active interrupt (no open drain)		
172	LBU_IRQ1_N	GPIO44	GPIO44		O/B/B/B (GPIO:I)	up	W18	LBU or GPIO <u>LBU-Mode:</u> Low-active interrupt (no open drain)		

1.5.8 Ethernet PHY1 and PHY2

No.	Signal Name		I/O	Pull-	PIN No.	Comment					
	PHY1 and PHY2										
173	DGND4		I		T17	Digital GND supply					
174	DVDD4		I		R21	Digital 1.5 V supply					
175	DVDD3		I		R22	Digital 1.5 V supply					
176	DGND3		I		R17	Digital GND supply					
177	P2VDDARXTX		I		N18	Analog Port Tx/Rx 1.5 V supply					
178	P2VSSARX		I		N17	Analog port GND supply					
179	P2RxN		В		P22	Port2 differential receive input					
180	P2RxP		В		P21	Port2 differential receive input					
181	P2VSSATX1		-		M18	Analog port GND supply					
182	P2TxN		В		M21	Port2 differential transmit output					
183	P2TxP		В		M22	Port2 differential transmit output					
184	P2VSSATX2		-		L19	Analog port GND supply					
185	P2RDxP		I		U22	Port2 FX differential receive input					
186	P2RDxN		Ι		U21	Port2 FX differential receive input					
187	P2TDxP		0		Y21	Port2 FX differential transmit					
						output					
188	P2TDxN		0		W21	Port2 FX differential transmit					
						output					
189	P2SDxP		I		V19	Port2 FX differential SD input					
190	P2SDxN		I		U18	Port2 FX differential SD input					
191	VSSAPLLCB		I		L18	Analog central GND supply					
192	VDDACB		I		H22	Analog central 3.3 V supply					
193	VDDAPLL		I		K19	Analog central 1.5 V supply					
194	EXTRES		В		L21	Resistor reference 12.4 kOhm					
195	ATP		В		L22	Analog test function					

No.	Signal Name		I/O	Pull-	PIN No.	Comment					
PH	PHY1 and PHY2										
196	P1SDxN		I		F19	Port1 FX differential SD input					
197	P1SDxP		I		G19	Port1 FX differential SD input					
198	P1TDxN		0		C22	Port1 FX differential transmit output					
199	P1TDxP		0		C21	Port1 FX differential transmit output					
200	P1RDxN				E21	Port1 FX differential receive input					
201	P1RDxP		I		E22	Port1 FX differential receive input					
202	P1VSSATX2		I		K18	Analog port GND supply					
203	P1TxP		В		J22	Port1 differential transmit output					
204	P1TxN		В		J21	Port1 differential transmit output					
205	P1VSSATX1		I		K17	Analog port GND supply					
206	P1RxP		В		G21	Port1 differential receive input					
207	P1RxN		В		G22	Port1 differential receive input					
208	P1VSSARX				J17	Analog port GND supply					
209	P1VDDARXTX		I		J19	Analog Port Tx/Rx 1.5 V supply					
210	GND33ESD		I		H18	Analog test GND supply					
211	VDD33ESD		I		F22	Analog test 3.3 V supply					
212	DGND2		I		G17	Digital GND supply					
213	DVDD2				H19	Digital 1.5 V supply					
214	DVDD1		I		G18	Digital 1.5 V supply					
215	DGND1				H21	Digital GND supply					

1.5.9 Power Supply

No.	Voltage Signal Name	I/O	PIN No.	Comment						
	Power Supply									
216	PLL_AVDD	Р	E12	PLL analog, 1.5 V						
217	PLL_AGND	Р	F13	PLL analog GND						
218-238	VDD Core	P	D6, D9, D12, D18, E5, E13, E18, F6, F17, L4, R2, T21, U6, U8, U17, V4, V5, V18, W13, W17, AA15	SV Core 1.5 V	(21 pins)					
239- 253	GND Core	Р	A21, E6, E11, E17, F5, F7, F16, G6, L5, T6, U16, V6, V11, V14, AA22	GND CORE	(15 pins)					
254-267	VDD IO	Р	A2, A9, A10, A14, A18, B22, H1, N1, W22, Y1, Y22, AB9, AB15, AB20	SV IO 3.3 V	(14 pins)					
268-281	GND IO	Р	A8, A12, A20, B1, B21, E10, F8, F15, J1, T1, U5, U7, U15, V17	GND IO	(14 pins)					
282-285	VDDQ (PECL)	Р	D21, D22, R19, V21	SV Q PECL 3.3 V	(4 pins)					
286-288	GND (PECL)	Р	F18, T18, T19	GND IO (PCI)	(3 Pins)					
289-304	Not Used Pins		E19, F21, H17, J18, K21, K22, M19, N19, N21, N22, P17, P18,	Not Used Pins	(16 Pins)					
			P19, R18, T22, V22	For improved heat connect these pint However, these pin	to GND.					
				remain unconnecte	d.					

Table 1: ERTEC 200 Pin Assignment and Signal Description

	Signal desc	cription:						
	IO = Signal direct	ion from per	spective of the application					
I:	Input	О:	Output					
В:	Bidirectional	P:	Power supply					
	Pull- = Internal pull-	up/pull-dowr	resistor connected to the signal pin					
up:	Internal pull-up	dn:	Internal pull-down					
	PU/PD = External resistances necessary, depending on application							
PU:	External pull-up		PD: External pull-down					

_N in last position of signal name signifies: Signal is Low active Example: INTA_N

Note:

(1) The BOOT[3:0] pins are read into the "BOOT_REG" system configuration register during the active RESET phase. After a reset, these pins are available as normal function pins.

(2) The CONFIG [6:1] pins are read into the "CONFIG_REG" system configuration register during the active RESET phase. After a reset, these pins are available as normal function pins.

(3) The TMC1 and TMC2 test pins are shorted to ground during operation. TEST_N and TACT_N can remain open.

(4) The GPIOs[31:0] and LBU pins can contain up to 4 different functions. The IO function pins have a different circuitry, corresponding to the selected function.

Example of IO Function: B/O/O/I/ (I) → Function 0 = Bidirectional, Function 1 = Output, Function 2 = Output, Function 3 = Input, (I) = IO Function during RESET = Input

For LBU, PHY-Debug or ETM-Trace-Interface the IO - function is active during Reset, which is selected with the pins CONFIG[6,5,2]. Default the Function 3 (ETM-Trace, GPIO[44:32]) is set with internal Pullup- and Pulldown-resistors.

Unusual feature:

ETM-outputs are switched to inputs during Reset. They are changed to outputs after the Trace-Modul is switched on with the debug-module.

Different LBU- and GPIO-Pins have bidirectional functions. The value in the bracket is the default value during Reset, if they are selected with CONFIG[6,5,2].

Example:

The alternative GPIO functions are selected by assigning parameters for the **GPIO_PORT_MODE_L** and **GPIO_PORT_MODE_H** registers. The tabs are described in Section 4.2.2.

The alternative LBU/MII functions are selected with the configuration pins CONFIG[6,5,2] in the user design.

2 ARM946E-S Processor

The ARM946E-S processor is implemented in the ERTEC 200. This description is based on /1/ and /2/.

2.1 Structure of ARM946E-S

An ARM946E-S processor system is used. The figure below shows the structure of the processor. In addition to the processor core, the system contains one data cache, one instruction cache, a memory protection unit (MPU), a system control coprocessor, and a tightly coupled memory. The processor system has an interface to the integrated AHB bus.

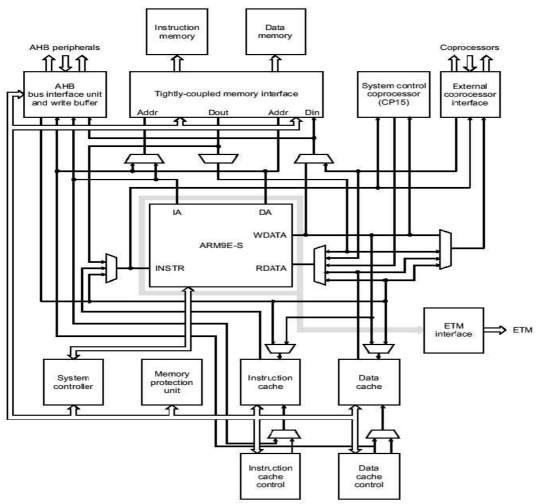


Figure 3: Structure of ARM946E-S Processor System

2.2 Description of ARM946E-S

The ARM946E-S processor system is a member of the ARM9 Thumb family. It has a processor core with Harvard architecture. Compared to the standard ARM9 family, the ARM946E-S has an enhanced V5TE architecture permitting faster switching between ARM and Thumb code segments and an enhanced multiplier structure. In addition, the processor has an integrated JTAG interface.

2.3 Operating Frequency of ARM946E-S

The processor can be operated at 50 MHz, 100 MHz, or 150 MHz. The operating frequency is set during the reset phase via the configuration pins **CONFIG[4]** and **CONFIG[3**]. Communication with the components of the ERTEC 200 takes place via the AHB bus at a frequency of 50 MHz.

2.4 Cache Structure of ARM946E-S

The following caches are integrated in the ARM946E-S.

- 8 Kbytes of instruction cache with lock function
- 4 Kbytes of data cache with lock function

Both caches are "Four-Way Set Associative" caches with 1-Kbyte segments. Each segment consists of 32 lines with 32 bytes (8 x 4 bytes). The D-cache has "write buffers" with write-back function.

The lock function enables the user to lock (LOCK) the contents of the cache segments. This function enables the command set for fast routines to be maintained permanently in the instruction cache. This mechanism can only be applied at the segment level with the ARM946E-S.

Both caches are locked after a reset. These caches can only be enabled if the Memory Protection Unit is also enabled. The I-cache can be enabled by setting **Bit 12** of the **CP15 control register**. The D-cache can be enabled by setting **Bit 2** of the **CP15 control register**. Access to this area is blocked if the cache is not enabled.

For additional information about <u>Caching</u> refer to Document /**1**/ **Section 3**. For more information on the description of the ARM946 registers, refer to Section 2.10 of this document.

2.5 Tightly Coupled Memory (TCM)

A 4-Kbyte data-tightly coupled memory (D-TCM) is implemented in the ARM946E-S processor of the ERTEC 200. The memory is locked after a reset. The D-TCM can be placed in the address area of the ARM946E-S as desired and must be used together with a region of the memory protection unit. Data from high-speed routines such as isochronous control can be placed in the D-TCM.

The D-TCM can be enabled by setting **Bit 16** of the **CP15 control register**. In addition, the address area of the D-TCM must be set in the **Tightly-Coupled Memory register**.

For more information about the <u>D-TCM</u> refer to document /1/ Section 5. For more information on the description of the ARM946 registers, refer to Section 2.10 of this document.

2.6 Memory Protection Unit (MPU)

The memory protection unit enables the user to partition specific memory areas (I-cache, D-cache, or DTCM) into various regions and to assign different attributes to them.

A maximum of 8 regions of variable size can be set. If regions overlap, the attributes of the higher region number apply. Settings for each region:

- Base address of region
- Size of region
- Cache and "write buffer" configuration
- Read/write access enable for privileged users/users

Settings are made in the following registers of the ARM946E-S:

- Register 2 "Cache configuration register"
- Register 3 "Write buffer control register"
- Register 5 "Access permission register"
- Register 6 "Protection region/base size register"

The base address defines the start address of the region. It must always be a multiple of the size of the region. Example: The region size is 4 Kbytes. The starting address is then always a multiple of 4 Kbytes.

Before the MPU is enabled, at least one region must have been assigned. Otherwise, the ARM946E-S can assume a state that can only be cancelled by a reset.

The MPU can be enabled by setting Bit 0 of the CP15 control register.

If the MPU is disabled, the I-cache- and D-cache cannot be accessed, even if they are enabled.

For more information about the <u>MPU</u> refer to Document /1/ Section 4. For more information on the description of the ARM946 registers, refer to Section 2.10 of this document.

2.7 Bus Interface of ARM946E-S

The ARM946E-S uses an AHB bus master interface to the multilayer AHB bus for opcode fetches and data transfers. The interface operates at a fixed frequency of 50 MHz. The data bus and address bus each have a width of 32 bits.

For more information about the bus interface and write buffer, and about the different transfer types, refer to Document /1/ Section 6.

2.8 ARM946E-S Embedded Trace Macrocell (ETM9)

An ETM9 module is connected at the ARM946E-S. This module permits debugging support for data and instruction traces in the ERTEC 200. The module contains all signals required by the processor for the data and instruction traces. The ETM9 module is operated by means of the JTAG interface. The trace information is provided outwards to the trace port via a FIFO memory. A detailed description can be found in Section 11

2.9 ARM Interrupt Controller (ICU)

The interrupt controller supports the FIQ and IRQ interrupt levels of the ARM946 processor. An interrupt controller with 8 interrupt inputs is implemented for FIQ. Six interrupt inputs (FIQ0-5) are occupied by the ERTEC 200, and 2 interrupt inputs (FIQ6-7) can be programmed optionally as IRQ sources. The high-priority FIQ interrupts are used for watchdog and address area monitoring and for debugging. An interrupt controller for 16 interrupt inputs is implemented for IRQ. Of the 16 IRQ inputs, two IRQ sources can be selected for as Fast-Interrupt_Requests (FIQ6-7) for processing. The assignment is made by specifying the IRQ number of the relevant interrupt input in the FIQ1REG / FIQ2REG register. The interrupt inputs selected as FIQ must be disabled for the IRQ logic. All other interrupt inputs can continue to be processed as IRQs. The interrupt controller is operated at a clock frequency of 50 MHz. Interrupt-request signals generated with a higher frequency must be lengthened accordingly for error-free detection.

2.9.1 Prioritization of Interrupts

It is possible to set the priorities of the IRQ and FIQ interrupts. Priorities 0 to 15 can be assigned to IRQ interrupts while priorities 0 to 7 can be assigned to FIQ interrupts. The highest priority is 0 for both interrupt levels. After a reset, all IRQ interrupt inputs are set to priority 15 and all FIQ interrupt inputs are set to priority 7. A priority register is associated with each interrupt input. PRIOREG0 to PRIOREG15 are for the IRQ interrupts and FIQPR0 to FIQPR7 are for the FIQ interrupts. A priority must not be assigned more than once. A check for the assignment of identical priorities is not performed in the ICU logic. All interrupt requests with a lower or equal priority can be blocked at any time in the IRQ priority resolver by assigning a priority in the LOCKREG register. If an interrupt that is to be blocked is requested at the same time as the write access to the LOCKREG register, an IRQ signal is output. However, the signal is revoked after two clock cycles. If an acknowledgement is to be generated nonetheless, the transferred interrupt vector is the default vector.

2.9.2 Trigger Modes

The "Edge-triggered" and "Level-triggered" operating modes are available for each interrupt input.

The trigger type is defined by means of the assigned bit in the TRIGREG register. For the "Edge-triggered" mode setting, differentiation can be made between a positive and negative edge evaluation. This is made in the EDGEREG register. In "Level-triggered" mode, the active level of the interrupt request is high active. By default, the IRQ interrupt parameters are assigned as described in Section 2.9.7, and the FIQ interrupts parameters are assigned as described in Section 2.9.8. In "Edge-triggered" mode, the interrupt input signal must be present for at least one clock cycle. In "Level-triggered" mode, the interrupt and the ARM946E-S CPU is confirmed. Shorter signals result in loss of the event.

2.9.3 Masking the Interrupt Inputs

Each IRQ interrupt can be enabled or disabled individually. The MASKREG register is available for this purpose. The interrupt mask acts only after the IRREG interrupt request register. That is, an interrupt is entered in the IRREG register in spite of the block in the MASKREG register. After a reset, all mask bits are set and, thus, all interrupts are disabled. At a higher level, all IRQ interrupts can be disabled globally via a command. When IRQ interrupts are enabled globally via a command, only those IRQ interrupts that are enabled by the corresponding mask bit in the MASKREG register are enabled.

For the FIQ interrupts, only selective masking by the mask bits in the FIQ_MASKREG register is possible. After a reset, all FIQ interrupts are disabled. A detected FIQ interrupt request is entered in the FIQ interrupt request register. If the interrupt is enabled in the mask register, processing takes place in the priority logic. If the interrupt request is accepted by the ARM946 CPU and an entry is made in the in-service request register (ISR), the corresponding bit is reset in the IRREG register. Each bit that is set in the IRREG register can be deleted via software. For this purpose, the number of the bit to be reset in the IRCLVEC register is transferred to the interrupt controller.

2.9.4 Software Interrupts for IRQ

Every IRQ interrupt request can be triggered by setting the bit corresponding to the input channel in the software interrupt register SWIRREG. Multiple requests can also be entered in the 16-bit SWIRREG register. The software interrupt requests are received directly in the IRREG register and, thus, treated like a hardware IRQ. Software interrupts can only be triggered by the ARM946E-S processor because only it has access authorization to the interrupt controller.

2.9.5 Nested Interrupt Structure

When enabled by the interrupt priority logic, an IRQ interrupt request causes an IRQ signal to be output. Similarly, an FIQ interrupt request causes the FIQ signal to be output to the CPU.

When the request is accepted by the CPU, the bit corresponding to the physical input in the register ISRREG is set. The IRQ/FIQ signal is revoked. The ISR bit of the accepted interrupt remains set until the CPU returns an End-Of-Interrupt command to the interrupt controller. As long as the ISR bit is set, interrupts with lower priority in the priority logic of the interrupt controller are disabled. Interrupts with a higher priority are allowed by the priority logic to pass and generate an IRQ/FIQ signal to the CPU. As soon as the CPU accepts this interrupt, the corresponding ISR bit in the ISRREG register is also set. The CPU then interrupts the lower-priority interrupt routine and executes the higher interrupt routine first. Lower-priority interrupts are not lost. They are entered in the IRREG register and are processed at a later time when all higher-priority interrupt routines have been executed.

2.9.6 EOI End-Of-Interrupt

A set ISR bit is reset by the End-Of-Interrupt command. The CPU must communicate this to the interrupt controller with the EOI command after processing of the corresponding interrupt server routine. To communicate the EOI command to the interrupt controller, the CPU writes any value to the IRQEND/FIQEND registers. The interrupt controller decides independently which ISR bit will be reset with the EOI command. If several ISR bits are set, the interrupt controller deletes the ISR bit of the highest-priority interrupt request at the time of the EOI command. The interrupt cycle is considered complete for the interrupt controller when all set ISR bits have been reset by the corresponding number of EOI commands. After this, lower-priority interrupts that have occurred in the meantime and have been entered in the RREG register can be processed in the priority logic.

During one or more accepted interrupts, the priority distribution of the IRQ/FIQ interrupt inputs must not be changed because the ICU can otherwise no longer correctly assign the EOI commands.

The CPU accepts an IRQ-/FIQ request by reading the IRVEC/FIVEQ register. This register contains the binary-coded vector number of the highest priority interrupt request at the moment. Each of the two interrupt vector registers can be referenced using two different addresses. The interrupt controller interprets the reading of the vector register with the first address as an "interrupt acknowledge". This causes the sequences for this interrupt to be implemented in the ICU logic.

Reading of the vector register with the second address is not linked to the "acknowledge function". This is primarily useful for the debugging functions in order to read out the content of the interrupt vector register without starting the acknowledge function of the interrupt controller.

2.9.7 IRQ Interrupt Sources

Interrupts from the following function groups of the ERTEC 200 are available to the IRQ interrupt controller:

	IRQ Interrupts										
Interrupt-Nr.	Function Block	Signal Name	Default Setting	Comment							
0	Timer	TIM_INT0	Rising edge	Timer 0							
1	Timer	TIM_INT1	Rising edge	Timer 1							
3:2	GPIO	GPIO (1:0)	Assignable	External input ERTEC 200 GPIO[1:0]							
5:4	GPIO	GPIO (31:30)	Assignable	External input ERTEC 200 GPIO[31:30]							
6	Timer	TIM_INT2	Rising edge	Timer 2							
7				Reserved							
8	UART	UART_INTR	High level	Group interrupt UART							
9	PHY0/1	P0/1_INTERP	Rising edge	Interrupt von PHY 0/1							
10	SPI	SSP_INTR	Rising edge	Group interrupt SPI							
11	SPI	SSP_ROR_INTR	Rising edge	Receive overrun interrupt SPI							
12	IRT switch	IRQ0_SP	Rising edge	High-priority IRT interrupt							
13	IRT switch	IRQ1_SP	Rising edge	Low-priority IRT interrupt							
14				Reserved							
15	DMA	DMA_INT	Rising edge	DMA controller, DMA transfer complete							

Table 2: Overview of IRQ Interrupts

2.9.8 FIQ Interrupt Sources

Interrupts from the following function groups of the ERTEC 200 are available to the FIQ interrupt controller:

	FIQ Interrupts							
Interrupt-Nr.	Function Block	Signal Name	Default Setting	Comment				
0	Watchdog		Rising edge					
1	APB bus		Rising edge	Access to non-existing address at the APB (1)				
2	Multilayer AHB		Rising edge	Access to non-existing address at the AHB (1)				
3	PLL-Status-Register		Rising edge	Group interrupt of: EMIF: I/O time-out PLL: Loss state PLL: Lock State see system control register "PLL_STAT_REG"				
4	ARM-CPU	COMM_Rx	Rising edge	Receive comm channel interrupt				
5	ARM-CPU	COMM_Tx	Rising edge	Transmit comm channel interrupt				
6	Optional	Optional from IRQ	Rising edge	User-programmable IRQ source				
7	Optional	Optional from IRQ	Rising edge	User-programmable IRQ source				

Table 3: Overview of FIQ Interrupts

 Access to non-existing addresses is detected by the individual function groups of the ERTEC 200 and triggers a pulse with duration Tp = 2/50 MHz. For evaluation of this interrupt, the connected FIQ input must be specified as an edgetriggered input.

2.9.9 IRQ Interrupts as FIQ Interrupt Sources

Interrupts from the IRQ interrupt can be placed on FIQ6 and FIQ7 können.

The interrupts of the FIQ interrupt controller are used for debugging, monitoring address area access, and for the watchdog.

FIQ interrupts no. 4 and 5 are the interrupts for embedded ICE RT communication. The UART can also be used as a debugger in place of the ICE. Effective real-time debugging is possible when the IRQ interrupt sources of the UART are mapped to the FIQs with the number 6 or 7. This enables debugging of interrupt routines.

2.9.10 Interrupt Control Register

The interrupt control registers are used to specify all aspects of control, prioritization, and masking of the IRQ/FIQ interrupt controllers.

		ICU (Base Addre	ess 0x5000_00	00)	
Register Name	Offset Address	Address Area	Access	Default	Description
IRVEC	0x0000	4 bytes	R	0xFFFFFFFF	Interrupt vector register
FIVEC	0x0004	4 bytes	R	0xFFFFFFFF	Fast interrupt vector register
LOCKREG	0x0008	4 bytes	R/W	0x00000000	Priority lock register
FIQ1SREG	0x000C	4 bytes	R/W	0x0000000	Fast int. request 1 select registe (FIQ6 on FIQ interrupt controller
FIQ2SREG	0x0010	4 bytes	R/W	0x00000000	Fast int. request 2 select registe (FIQ7 on FIQ interrupt controller
IRQACK	0x0014	4 bytes	R	0xFFFFFFFF	Interrupt vector register with IRC acknowledge
FIQACK	0x0018	4 bytes	R	0xFFFFFFFF	Fast interrupt vector register wit FIQ acknowledge
IRCLVEC	0x001C	4 bytes	W	0x	Interrupt request clear vector
MASKALL	0x0020	4 bytes	R/W	0x00000001	Mask for all interrupts
IRQEND	0x0024	4 bytes	W	0x	End of IRQ interrupt
FIQEND	0x0028	4 bytes	W	0x	End of FIQ interrupt
FIQPR0	0x002C	4 bytes	R/W	0x0000007	FIQ priority register on input FIC of the FIQ interrupt controller
FIQPR1	0x0030	4 bytes	R/W	0x0000007	FIQ priority register on input FIC of the FIQ interrupt controller
FIQPR2	0x0034	4 bytes	R/W	0x0000007	FIQ priority register on input FIC of the FIQ interrupt controller
FIQPR3	0×0038	4 bytes	R/W	0x0000007	FIQ priority register on input FIC of the FIQ interrupt controller
FIQPR4	0x003C	4 bytes	R/W	0x0000007	FIQ priority register on input FIC of the FIQ interrupt controller
FIQPR5	0x0040	4 bytes	R/W	0x0000007	FIQ priority register on input FIC of the FIQ interrupt controller
FIQPR6	0x0044	4 bytes	R/W	0x0000007	FIQ priority register on input FIC of the FIQ interrupt controller
FIQPR7	0x0048	4 bytes	R/W	0x0000007	FIQ priority register on input FIC of the FIQ interrupt controller
FIQISR	0x004C	4 bytes	R	0x00000000	FIQ in-service register
FIQIRR	0x0050	4 bytes	R	0x00000020	FIQ request register
FIQ_MASKREG	0x0054	4 bytes	R/W	0x000000FF	FIQ interrupt mask register
IRREG	0x0058	4 bytes	R	0x000001xx	Interrupt request register
MASKREG	0x005C	4 bytes	R/W	0x0000FFFF	Interrupt mask register
ISREG	0x0060	4 bytes	R	0x00000000	In-service register
TRIGREG	0x0064	4 bytes	R/W	0x00000000	Trigger select register
EDGEREG	0x0068	4 bytes	R/W	0x00000000	Edge select register
SWIRREG	0x006C	4 bytes	R/W	0x00000000	Software interrupt register
PRIOREG 0	0x0070	4 bytes	R/W	0x000000F	Priority register 0

PRIOREG 1	0x0074	4 bytes	R/W	0x0000000F			
PRIOREG15 0x00AC 4 bytes R/W 0x000000F Priority register 15							
Table 4: Overview of Int	able 4: Overview of Interrupt Control Register						

2.9.11 ICU Register Description

IRVEC		R	Addr.: 0x5000_0000 Default: 0xFFFF_FFF			
Description		Interrupt vector register Input with highest priority pending interrupt request				
Bit No.	Nam	9	Description			
3:0	IRVE	С	For pending, valid interrupt: Binary code of input number. Default vector: Bit[3:0] = 1			
31:4	Vecto	or ID	For pending, valid interrupt: Bit[31:4] = 0. Default vector: Bit[31:4] = 1			

FIVEC		R	Addr.: 0x5000_0004 Default: 0xFFFF_FFF				
Description		Fast interrupt vector register Number of the highest-priority pending fast interrupt request					
Bit No.	Nam	e	Description				
2:0	FIVE	С	For pending, valid interrupt: Binary code of FIQ number. Default vector: Bit[2:0] = 1				
31:3	Vecto	or ID	For pending valid Bit[31:3] = 0. Default vector: Bit[31:3] = 1				

LOCKREG	ì	R	/W	Addr.: 0x5000_0008	Default: 0x0000_0000	
Description		Priority lock register Specification of a priority for blocking interrupt requests of lower and equal priority				
Bit No.	Nam	Э	Description			
3 – 0	LOCI	(PRIO	Binary code of lock priority.			
7	LOCI	KENABLE	0=Lock inactive / 1=Lock active			

FIQ1SREC	à	R/	W	Addr.: 0x5000_000C	Default: 0x0000_0000	
Description		Fast interrupt request 1 select register Declaration of an IRQ input as FIQ6 (input FIQ6 on FIQ interrupt controller)				
Bit No.	Name	Э	Description			
3 – 0	FIQ1	SREG	Number of th	Number of the input to be selected (binary code)		
7	FIQ1	SENABLE		Ignore FIQ declaration		
			0=Take into	account FIQ declaration		

FIQ2SREC	à	R/	W	Addr.: 0x5000_0010	Default: 0x0000_0000	
Description		Fast interrupt request 2 select register Declaration of an IRQ input as FIQ7 (input FIQ7 on FIQ interrupt controller)				
Bit No.	Name	Э	Description			
3 – 0	FIQ2	SREG	Number of the input to be selected (binary code)			
7	FIQ2	SENABLE	0=Ignore FIC	Ignore FIQ declaration		
			0=Take into	account FIQ declaration		

IRQACK		R		Addr.: 0x5000_0014	Default: 0xFFFF_FFFF	
Description		Interrupt vector register with IRQ acknowledge Confirmation of highest-priority pending interrupt request by reading the associated interrupt vector				
Bit No.	Name	Э	Description			
3 – 0	IRVE	С	Binary code of	of input number		
31 - 4	Vecto	or ID		ctor: always '0'. r: always '1' (also bits 3 – I	0).	

FIQACK		R	Addr.: 0x5000_0018 Default: 0xFFFF_FFF			
Description			Fast interrupt vector register with FIQ acknowledge Confirmation of fast interrupt request by reading the associated interrupt vector			
Bit No.	Name	е	Description			
2-0	FIVE	С	Binary code of FIQ number			
31 – 3	Vecto	or ID	Valid FIQ vector: always '1'.			
			Default vector: always '1' (also bits 2 – 0).			

IRCLVEC		W	Addr.: 0x5000_001C Default:		
Description		Interrupt request clear vector Immediate deletion of an interrupt request in the interrupt request register			
Bit No.	Name	Э	Description		
3 – 0	IRCLVEC		Binary code of the input number of the request to be deleted		
7	unuse	ed			

MASKALL		R/	W Addr.: 0x5000_0020 Default: '1'
Description		Mask all Interrupts Global disable for	s all IRQ interrupt inputs
Bit No.	Name	9	Description
0	MASI	KALL	 '0' = Enable all non-masked IRQ interrupt inputs (consideration given to set mask bits) '1' = Global disable for all IRQ interrupt inputs (independent of the interrupt mask)

IRQEND		W	Addr.: 0x5000_0024
Description		End-of-interrupt (I Communicates to associated with th	the IRQ interrupt controller the completion of the interrupt service routine
Bit No.	Name Not u	-	Description
	INOLU	360	

FIQEND	V	V	Addr.: 0x5000_0028	Default:
Description		1 ()		on of the interrupt service routine
Bit No.	Name	Description	l	
	Not used			

FIQPR0		R/W	Addr.: 0x5000_002C Default: 0x0000_0007			
FIQPR7		R/W	Addr.: 0x5000_0048			
Description		FIQ priority registe Priority of the fast	ers interrupt request at input FIQ0 to FIQ7 of the FIQ interrupt controller			
Bit No.	Name	Э	Description			
2-0	FIQPR0 to 7		Binary code of the priority			
7 – 3	Not u	sed				

FIQISR		R Addr.: 0x5000_004C Default: 0x0000_0000				
Description		FIQ in-service register Indication of the fast interrupt requests confirmed by the CPU				
Bit No.	Name	Э	Description			
7 – 0	FIQIS	ŝR	nputs 0 to 7 of the FIQ interrupt controller 0' = Fast interrupt request not confirmed 1' = Fast interrupt request has been confirmed			

FIQIRR		R	Addr.: 0x5000_0050 Default: 0x0000_0020		
Description		FIQ request register Indication of the fast interrupt request detected with a positive edge			
Bit No.	Name	9	Description		
7 – 0	FIQIF	R	Inputs 0 to 7 of the FIQ interrupt controller		
			'0' = No request '1' = Request is occurred		

FIQ_MASKREG R/		/W	Addr.: 0x5000_005	4 Default: 0x0000_00FF			
Description		Interrupt mask reg Enable/disable of		nputs			
Bit No.	Nam	Э	Description				
7 – 0			FIQ interrupt input 0 to 7 0' = Interrupt input enabled '1' = Interrupt input disabled				

IRREG		R	Addr.: 0x5000_0058 Default:0x0000_01xx		
Description		Interrupt request r Storage of interru	egister ot requests that have occurred		
Bit No.	Name	Э	Description		
15 – 0	IRRE	G	errupt input 0 to 15 Interrupt request inactive/1=Interrupt request active 5, 4, 3, 2 depending on GPIO 31, 30, 1, 0		

MASKREG R/W		V	Addr.: 0x5000_005C	Default: 0x0000_FFFF	
Description		Interrupt mask register Enable/disable of interrupt inputs			
Bit No.	Name	Э	Description		
15 – 0	MASKREG Interrupt inp 0=Interrupt		ut 0 to 15 nput enabled/1=Interrupt inpu	t disabled	

ISREG		R	Addr.: 0x5000_0060 Default: 0x0000_0000		
Description		In-service register Indication of the interrupt requests confirmed by the CPU			
Bit No.	Name	Э	escription		
15 – 0	ISRE	G	nterrupt input 0 to 15		
			Interrupt request not confirmed		
			Interrupt request has been confirmed		

TRIGREG		R/W		Addr.: 0x5000_0064	Default: 0x0000_0000	
Description		Trigger select regination of interrection of i				
Bit No.	Name	Э	Description			
15 – 0	TRIG	REG	Interrupt input 0 to 15			
			0=Interrupt d	etection via edge		
			1=Interrupt d	etection via level		

EDGEREC	à	R/	W A	ddr.: 0x5000_00	68 Default: 0x0000_0000
Description		Edge select regist Edge selection for (only if edge deter	r interrupt detectio	on for the associated in	put)
Bit No.	Name	Э	Description		
15 – 0	EDGI	EREG		to 15 ction via positive ed ction via negative ec	

SWIRREG R/			/W	Addr.: 0x5000_006C	Default: 0x0000_0000		
Description		Software interrup Specification of ir		sts			
Bit No.	Nam	Э	Description				
15 – 0	SWIRREG		Interrupt input 0 to 15				
			0=No interrupt request				
			1=Set interrupt request				

PRIOREG	0	R/	W	Addr.: 0x5000_0070	Default: 0x0000_000F	
PRIOREG	15	 R/		Addr.: 0x5000_00AC	Default: 0x0000_000F	
Description Priority register Specification of priority of an interrupt request at the associated input				ted input		
Bit No.	Nam	e	Description			
3 – 0	PRIC	DREG	Binary code of the priority			

2.10 ARM946E-S Register

The ARM946E-S uses CP15 registers for system control. Consequently, the following settings are possible:

- Configure cache type and cache memory area
- Configure tightly coupled memory area
- Configure memory protection unit for various regions and memory types
- Assign system option parameters
- Configure "Little Endian" or "Big Endian" operations

Register	Access	Description
0	R	ID code register (1) Cache type register (1) Tightly coupled memory size register (2)
1	W/R	Control register
2	W/R	Cache configuration register (2)
3	W/R	Write buffer control register
4	XXX	Undefined
5	W/R	Access permission register (2)
6	W/R	Protection region base/size register (2)
7	W	Cache operation register
8	ххх	Undefined
9	W/R	Cache lockdown register (2)
10	ххх	Undefined
11	ххх	Undefined
12	ххх	Undefined
13	W/R	Trace process ID register
14	ххх	Undefined
15	W/R	RAM/TAG-BIST test register (1) Test state register (1) Cache debug index register (1) Trace control register

Table 5: CP15 Registers - Overview

(1) Registers contain multiple information entries that are selected by the "opcode_2" or "CRm" fields.(2) Separate registers for instruction and data (see detailed description of registers).

Undefined means:

When this register is read, the read value is undefined.

When this register is written to, unforeseeable configuration changes can occur in the ARM946.

Refer to documents /1/ and /2/ for a detailed description of the ARM946 registers.

3 Bus System of the ERTEC 200

Internally, the ERTEC 200 has two buses.

- High-performance communication bus (multilayer AHB bus)
- I/O bus (APB bus)

The following function blocks are connected directly to the multilayer AHB bus:

- ARM946E-S (Master)
- IRT switch (Master/Slave)
- LBU (Master)
- Interrupt controller (Slave)
- EMIF interface (Slave)
- DMA-Controller (Master/Slave)

The master can access the remaining I/O connected to the low-performance APB bus via an AHB/APB bridge.

3.1 "Multilayer AHB" Communication Bus

The multilayer AHB bus is characterized by a high bus availability and data transmission. It is a 32-bit wide bus with multimaster capability. It operates at a frequency of 50 MHz and has the functionality of the ARM-AHB bus (see Document /4/ Section 3). Connecting of several AHB segments in the multi-layer AHB bus enables 4 masters to access different slaves simultaneously.

3.1.1 AHB Arbiter

Arbiters control the access when multiple masters access a slave simultaneously. Each

AHB arbiter uses the same arbitration process. "Round robin" is specified. Alternatively, a fixed priority assignment of the AHB master can be set by parameter assignment of the ARB_MODE bit in the M_LOCK_CNTL system control register. Fixed priority assignment should be avoided due to the dynamic sequences on the multilayer AHB bus. The round robin arbitration procedure prevents mutual blocking of the AHB master over a long period on the multilayer AHB bus. With fixed priority assignment, the ARM has the highest priority assignment, followed by IRT, DMA, and LBU with the lowest priority.

3.1.2 AHB Master-Slave Coupling

	AHB Master-Slave Coupling						
Slave Master	APB Slave 1	EMIF Slave 2	DMA Slave 3	IRT Slave 4	INT-Control Slave 5		
ARM	Х	Х	X	Х	X		
IRT		x					
DMA	x	x					
LBU	х	x		Х			

The table below shows which AHB masters can communicate with which AHB slaves.

Table 6: Overview of AHB Master-Slave Access

For closed-loop control applications, attention must be paid that AHB masters do not block each other over a long period. This would be possible if, for example, an IRT master and an ARM master want to access the same EMIF slave with a time lag. In this case, the ARM master would have to pause in a "Wait" until the IRT master enables the EMIF slave again. To prevent this situation, monitoring is integrated into the IRT switch, which enables the slave momentarily via an IDLE state after **8** consecutive data transfers (burst or single access). In this phase, another AHB master can access this slave.

3.2 APB I/O Bus

The APB bus is connected by means of an AHB/APB bridge on the multilayer AHB bus. The APB bus has a width of 32 bits and operates at a frequency of 50 MHz.

4 <u>I/O on APB bus</u>

The ERTEC 200 block has multiple I/O function blocks. They are connected to the 32-bit APB I/O bus. The ARM946E-S, DMA controller and LBU interface can access the I/O. The following I/O are available.

- 8 Kbyte Boot ROM
- 32-bit GPIO (*)
- UART
- SPI interface
- Timer 0 2
- F-timer
- Watchdog
- System control register

(*) The complete 32 bits for GPIO input/output are only available if alternative functions are not assigned.

The I/O function blocks connected to the APB bus have data interfaces of different widths. The data width and the supported access mechanisms are shown in the table below. Non-permitted access types such as byte-by-byte loading of timer reload registers are not intercepted on the hardware side.

	Access 7	- ypes		Wait States	on the AHB	
Bit 31:24	Bit 23:16	Bit 15:8	Bit 7:0	Read	Write	Function Block
	32 b	it		2	0	Timer0/1/2, F-Counter, System-Control-Register, Watchdog, Boot_Rom
8 bit	8 bit	8 bit	8 bit			
16	bit	16	bit	2	0	GPIO
32 bit						
-	-	- 16 bit		2	0	SPI1
-	-	-	8 bit	2	0	UART

Table 7: Access Type and Data Width of the I/O

Accesses to non-decoded-out memory or register areas trigger an FIQ1 interrupt. Access by a generated "Ready" signal from the APB address decoder is closed. Write accesses do not affect the system. Read accesses supply undefined data.

4.1 BOOT ROM

The ERTEC 200 is implemented with a BOOT ROM whose integrated opcode enables software to be downloaded from an external storage medium. Various routines are available for the different boot and download modes. In order to select the source and the mode, four BOOT[3:0] inputs are available on the ERTEC 200. During the active reset phase, the boot pins are read in and stored in the <u>BOOT REG</u> register in the system control register area.

After startup of the processor, the system branches to the appropriate BOOT routine based on the coding and the download is performed. After the download is complete, the loaded functions are executed. After RESET has become inactive, the BOOT pins are available as normal EMIF pins.

The following actions lead to a boot operation:

- HW reset
- Watchdog Reset
- Software reset caused by setting the **XRES_SOFT** bit in the reset control register (system control register area)

The following download modes are supported:

BOOT(3)	BOOT(2)	BOOT(1)	BOOT(0)	BOOTING OF
0	0	0	0	External ROM with 8-bit data width
0	0	0	1	External ROM with 16-bit data width
0	0	1	0	External ROM with 32-bit data width
1	0	0	0	Fast External ROM with 8-bit data width
1	0	0	1	Fast External ROM with 16-bit data width
1	0	1	0	Fast External ROM with 32-bit data width
0	0	1	1	Reserved
0	1	0	0	Reserved
0	1	0	1	SPI1
0	1	1	0	UART
0	1	1	1	LBU
1	0	1	1	Reserved

Table 8: Selection of Download Source

- Booting from Flash or EEPROM with 8/16/32-bit data width via EMIF I/O Bank 0 (CS_PER0_N).
- Booting from serial EEPROMs/Flashes via the SPI interface. The GPIO[22] control cable is used as the chip select for the serial BOOT ROM. The storage medium is selected by means of the GPIO[23] control cable.
- Booting from a host processor system via the LBU bus. In this case, the code is downloaded from the host processor.
- Booting from UART. With the bootstrap method, a routine for operation of the serial interface is first downloaded. This
 routine then controls the actual program download.

4.1.1 Booting from External ROM

This boot mode is provided for applications for which the majority of the user firmware runs on the ARM946E-S. The boot process is determined entirely by the external image. Thus, the boot process can be carried out with a minimum initialization.

4.1.2 Booting via SPI

SPI-compatible EEPROMs as well as SPI-compatible Data Flash memories can be used as an SPI source. GPIO cable GPIO[23] is used to select the type.

- GPIO[23] = 0 → SPI-compatible Data Flash e.g., AT45DB011B
- GPIO[23] = 1 → SPI-compatible EEPROM e.g., AT25HP256

The GPIO[22] GPIO cable is used as the chip select for the SDI memory.

The serial protocols by Motorola, Texas Instruments, and NSC are supported in principle.

4.1.3 Booting via UART

Boot mode via UART uses a bootstrap method that first downloads to the ERTEC200 a routine for operating the serial interface, which then performs the actual download of the program.

After the boot operation, the UART interface can be used in a different capacity (e.g., as a terminal interface).

4.1.4 Booting via LBU

Booting via the LBU interface must be carried out actively by the external host processor. The LBU host can then transfer the user code to the memory of the ERTEC 200.

The ARM boot software for booting via LBU does not read out any module ID. The module ID must be stored in a memory medium (e.g. SPI-EEPROM) read out by the host processor via the LBU interface. Depending on the ID, the host processor starts its boot process with the appropriate user software.

4.1.5 Memory Swapping

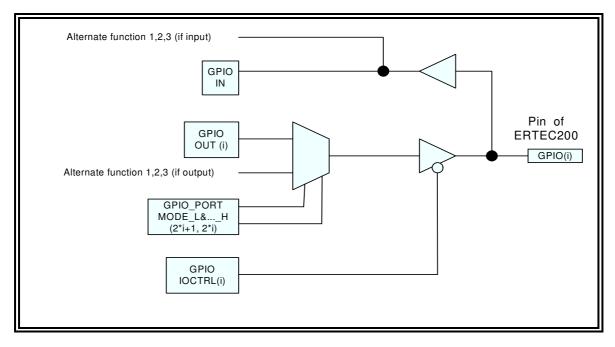
The reset vector of the ARM946E-S points to address 0x0000_0000. For this reason, the boot ROM is placed starting at address 0x0000_0000 after RESET. The boot ROM can also be addressed in its mirror area (see Section 10.2). When the boot operation is complete, SRAM or SDRAM can be swapped to address 0x0000_0000 in order to create the exception vector table for the ARM946E-S starting from address 0x0000_0000 - 0x0000_001F. The original address areas for boot ROM, SRAM, and SDRAM are not affected by memory swapping.

Memory swapping takes place in the **MEM-SWAP** system control register.

4.2 General Purpose I/O (GPIO)

Up to 45 General Purpose Inputs/Outputs are available in the ERTEC 200. These are divided into two groups:

- GPIO[31:0] 32 bits on the APB I/O bus
- GPIO[44:32] 13 bits as an alternative function on the LBU interface


The GPIOs [31 : 0] can be used as follows

- Inputs
- Outputs
- One of up to 3 additional special functions (Watchdog, Timer, F-Timer, UART, SPI, ETM and MC-PLL)

The direction of the IO can be programmed bit-by-bit in the "GPIO_IOCTRL" register. The function selection of the special I/O functions can be programmed in the GPIO_PORT_MODE_L and GPIO_PORT_MODE_H registers.

The GPIO inputs [1 : 0] and [31 : 30] can also be used as external interrupt inputs. They are connected at the IRQ interrupt controller of the ARM946. The polarity of the GPIO interrupts can be specified with the **GPIO_POLSEL** register (see GPIO register description)

The following figure shows the structure of a GPIO[31:0] pin as a normal I/O function or as an alternative function.

Figure 4: GPIO Cell on GPIO Port [31:0] of the ERTEC 200

The GPIOs [44 : 32] are available on the LBU bus when the LBU interface is not used. The selection is made with the configuration pin CONFIG[2] = 1. The GPIOs[44:32] can then be used as normal inputs or outputs. The direction of the GPIOs[44:32] can be programmed bit-by-bit in the **"GPIO_IOCTRL2**" register.

4.2.1 Address Assignment of GPIO Registers

The GPIO registers are 32 bits in width. The registers can be read or written to with 8-bit, 16-bit, or 32-bit accesses.

	GPIO (Base Address 0x4000_2500)						
Register Name	Offset Address	Address Area	Access	Default	Description		
GPIO_IOCTRL	0x0000	4 bytes	W/R	0xFFFFFFFF	Configuration register for GPIO		
GPIO_OUT	0x0004	4 bytes	W/R	0x0000000	Output register for GPIO		
GPIO_IN	0x0008	4 bytes	R	Port assignment	Input register for GPIO		
GPIO_PORT_MODE_L	0x000C	4 bytes	W/R	0x00000000	Function assignment of GPIO port 0 to 15		
GPIO_PORT_MODE_H	0x0010	4 bytes	W/R	0x00000000	Function assignment of GPIO port 16 to 31		
GPIO_POLSEL	0x0014	4 bytes	W/R	0x00000000	Interrupt polarity of GPIO interrupt		
GPIO2_IOCTRL	0x0020	4 bytes	W/R	0x00001FFF	Configuration register for GPIO2		
GPIO2_OUT	0x0024	4 bytes	W/R	0x00000000	Output register for GPIO2		
GPIO2_IN	0x0028	4 bytes	R	Port assignment	Input register for GPIO2		

Table 9: Overview of GPIO Registers

4.2.2 GPIO Register Description

GPIO_IO	GPIO_IOCTRL W/F			ldr.: 0x4000_250	0 Default: 0xFFFF_FFFF	
Description		Configuration regi	Configuration register for General Purpose IO[31:0]			
Bit No.	Name	Э	Description			
31 - 0	GPIC	O_IOCTRL[31:0] 0 : GPIOx i 1: GPIOx i x = Bit 0				

GPIO_OU	JT	W	/R	Addr.: 0x4000_2504	Default: 0x0000_0000
Description		Output register for General Purpose IO[31:0]			
Bit No.	Name	9	Description		
310	GPIC	_OUT[31:0]	0: GPIO outp	outx = 0, 1: GPIO outputx = 1	

GPIO_IN		R	Addr.: 0x4000_2508	B Default: Port assignment
Description		Input register for General Purpose IO[31:0]		
Bit No.	Name	9	Description	
310	GPIC	_IN[31:0]	0: GPIO inputx = 0, 1: GPIO inputx = 1	1

GPIO_PO	RT_	MODE_L W/R	Addr.: 0x4000_250C Default: 0x0000_0000	
Description Configuration register for GP-IO[15:0] Function assignment: 00 = Function 0; 01 = Function 1; 10 = Function 2; 11 = Function 3				
Bit No.	Name	0	Description	
1:0	GPIC	0_PORT_MODE	Port GPIO[0];	
3:2	GPIC	1_PORT_MODE	Port GPIO[1];	
5:4	GPIC	2_PORT_MODE	Port GPIO[2];	
7:6	GPIC	3_PORT_MODE	Port GPIO[3];	
9:8	GPIC	4_PORT_MODE	Port GPIO[4];	
11:10	GPIC	5_PORT_MODE	Port GPIO[5];	
13:12	GPIC	6_PORT_MODE	Port GPIO[6];	
15:14	GPIC	7_PORT_MODE	Port GPIO[7];	

17:16	GPIO8_PORT_MODE	Port GPIO[8];
19:18	GPIO9_PORT_MODE	Port GPIO[9];
21:20	GPIO10_PORT_MODE	Port GPIO[10];
23:22	GPIO11_PORT_MODE	Port GPIO[11];
25:24	GPIO12_PORT_MODE	Port GPIO[12];
27:26	GPIO13_PORT_MODE	Port GPIO[13];
29:28	GPIO14_PORT_MODE	Port GPIO[14];
31:30	GPIO15 PORT MODE	Port GPIO[15];

GPIO_PC	RT_MODE_H W/F	Addr.: 0x4000_2510 Default: 0x0000_0000
Description	Configuration regist	er for GP-IO[31:16]
	Function assignmen	nt:
	00 = Function 0 ; 01	= Function 1; 10 = Function 2; 11 = Function 3
Bit No.	Name	Description
1:0	GPIO16_PORT_MODE	Port GPIO[16];
3:2	GPIO17_PORT_MODE	Port GPIO[17];
5:4	GPIO18_PORT_MODE	Port GPIO[18];
7:6	GPIO19_PORT_MODE	Port GPIO[19];
9:8	GPIO20_PORT_MODE	Port GPIO[20];
11:10	GPIO21_PORT_MODE	Port GPIO[21];
13:12	GPIO22_PORT_MODE	Port GPIO[22];
15:14	GPIO23_PORT_MODE	Port GPIO[23];
17:16	GPIO24_PORT_MODE	Port GPIO[24];
19:18	GPIO25_PORT_MODE	Port GPIO[25];
21:20	GPIO26_PORT_MODE	Port GPIO[26];
23:22	GPIO27_PORT_MODE	Port GPIO[27];
25:24	GPIO28_PORT_MODE	Port GPIO[28];
27:26	GPIO29_PORT_MODE	Port GPIO[29];
29:28	GPIO30_PORT_MODE	Port GPIO[30];
31:30	GPIO31_PORT_MODE	Port GPIO[31];

GPIO_PC	OLSEL W	R Addr.: 0x4000_2514 Default: 0x0000_0000				
Description Interrupt polarity for GPIO interrupts [31/30/1/0]						
Bit No.	Name	Description				
314	Reserved	Reserved				
3	POLSEL GPIO31	0: GPIO31 is not inverted to ICU [IRQ5] 1: GPIO31 is inverted to ICU [IRQ5]				
2	POLSEL GPIO30	0: GPIO30 is not inverted to ICU [IRQ4] 1: GPIO30 is inverted to ICU [IRQ4]				
1	POLSEL GPIO1	0: GPIO1 is not inverted to ICU [IRQ3] 1: GPIO1 is inverted to ICU [IRQ3]				
0	POLSEL GPIO0	0: GPIO0 is not inverted to ICU [IRQ2] 1: GPIO0 is inverted to ICU [IRQ2]				

GPIO2_IOCTRL			Addr.: 0x4000_2520	Default: 0x0000_1FFF		
Description Co		Configuration register for General Purpose IO [44:32]				
Bit No.	Name		Description			
3113	Rese	rved	Reserved			
120	GPIC	2_IOCTRL[44:32]	0: GPIOx = Output, 1: GPIOx = Input			

GPIO2_C	DUT	W	/R	Addr.: 0x4000_25	524 I	Default: 0x0000_0000	
Description		Output register for General Purpose IO [44:32]					
Bit No.	Name		Description				
3113	Reserved		Reserved				
120	GPIO2_OUT[44:32]		0: GPIO outp	0 outputx = 0, 1: GPIO outputx = 1			

GPIO2_I	N	R		Addr.: 0x4000_2528	Default: Port assignment	
Description		Input register for General Purpose IO [44:32]				
Bit No.	Name	e	Description			
3113	Rese	rved	Reserved	erved		
120	GPIC	GPIO2_IN[44:32] 0: 0		tx = 0, 1: GPIO inputx = 1		

4.3 Timer 0/1/2

Three independent timers are integrated in the ERTEC 200. They can be used for internal monitoring of diverse software routines. Each timer is assigned an interrupt that is connected to the IRQ interrupt controller of the ARM946. Access to these 3 timers is always 32 bits in width.

4.3.1 Timer 0 and Timer 1

Both timers have the following functionality:

- 32-bit count register
 - Input clock can be switched to:
 - 50 MHz clock (default setting)
 - 8-bit prescaler per timer (can be assigned separately)
- Down-counting
- Load/reload function
- Start, stop and continue functions
- Interrupt when counter state 0 is reached
- Count register can be read/write-accessed

The timers 0 / 1 are deactivated after reset. The timers are enabled by setting the "RUN/XStop" bit in the status/control register of the respective timer. The timer then counts downwards from its loaded 32-bit starting value. When the timer value reaches 0, a timer interrupt is generated. The interrupt can then be evaluated by the IRQ interrupt controller. Depending on the reload mode, the two timers behave as follows:

• Reload mode = 0 The corresponding time stops when attaining the value = 0.

• Reload mode = 1 The corresponding timer is reloaded with the 32-bit reload value and automatically restarted. The timer can also be reloaded with the reload value during normal timer function (count value ! = 0). This occurs by setting the "LOAD" bit in the status/control register of the timer.

Normally, the timer clock operates at 50 MHz, which is generated by the internal PLL. Each timer can also be operated with an 8-bit prescaler. This can be used to increase the timer time accordingly.

4.3.1.1 Timer 0/1 Interrupts

The timer 0/1 interrupt is active (High) starting from the point at which the timer value is counted down to 0. The timer interrupt is deactivated (Low) when the reload value is automatically reloaded or the "LOAD" bit is set by the user. The interrupt is not reset when the reload value 0 is loaded. If the timer is deactivated (Run/XStop = 0), the interrupt is also deactivated.

If the timer operates in reload mode without a prescaler, the interrupt is present only for one 50 MHz cycle. This must be taken into account when assigning the relevant interrupt input (level/edge evaluation).

4.3.1.2 Timer 0/1 Prescaler

- An 8-bit prescaler is available for timer 0/1.
- Both prescalers are deactivated after RESET and deactivated by setting the Run/xStop_V bit in the control
 register.
- Settings can be made independently for each prescaler.
- Both prescalers have their own 8-bit reload register.
- If the reload value or starting value of the prescaler is 0, prescaling does not occur.
- The current prescaler value cannot be read out.
- There are no status bits for the prescalers indicating the value 0.
- The prescalers always run in Reload mode.

4.3.1.3 Cascading of Timers 0/1

If the "Cascading" bit is set, both timers can be cascaded to form one 64-bit timer.

The cascaded timer is enabled via the status/control register of Timer 1. The interrupt of Timer 1 is active. The interrupt of Timer 0 must be disabled when the timers are cascaded. When prescalers are specified, the prescaler of Timer 1 is used.

The user must provide for data consistency in the user software when reading out the 64-bit timer.

4.3.2 Timer 2

Timer2 has the following functionality:

- 16-bit count register
- Fixed 50 MHz input clock
- Up-counter
- 16-bit reload value
- Start/stop function
- Interrupt when counter state 0 is reached
- Different function modes can be assigned (one-shot, cycle, and retrigger mode)

Timer 2 can be used for general monitoring functions.

Timer2-Modi:

• One-Shot-Mode: TIM2_CTRL_REGISTER(OneShot_Mode = 1, Timer_Mode = 0)

When Timer2 is started with Run/xStop_T2=1, it counts up from zero until it reaches the reload value. When the reload value is reaches, Timer 2 is stopped, and the Timer2 interrupt is generated. Timer2 remains at the reload value. If RUN/xSTOP = 0 is set, then Timer2 is reset to zero, and the Timer2 interrupt is deactivated again.

• Cycle mode: TIM2_CTRL_REGISTER(OneShot_Mode = 0, Timer_Mode = 0) If the timer is started with Run/xStop_T2=1, it counts up from zero until it reaches the reload value. When the reload value is reached, the Timer2 interrupt is activated, Timer 2 is reset to zero, and the count process resumes. If RUN/xSTOP = 0 is set, then Timer2 is stopped, the Timer2 value is reset to zero, and if the Timer2 interrupt was activated, it is deactivated again.

• Retrigger mode: TIM2_CTRL_REGISTER(OneShot_Mode = 0, Timer_Mode = 1) The timer is operated in one-shot mode with retriggering of UART RxD. If the timer is started with Run/xStop_T2=1, then the timer only counts when the UART-RxD cable is at level 1. When the level is 1, the timer value is reset to zero. Further operation of the timer and the interrupt generation are the same as in one-shot mode.

4.3.3 Address Assignment of Timer Registers

	Timer (Base Address 0x4000_2000)					
Register Name	Offset Address	Address Area	Access	Default	Description	
CTRL_STAT0	0x0000	4 bytes	R/W	0x00000000	Control/status register timer 0	
CTRL_STAT1	0x0004	4 bytes	R/W	0x00000000	Control/status register timer 1	
RELD0	0x0008	4 bytes	R/W	0x00000000	Reload register timer 0	
RELD1	0x000C	4 bytes	R/W	0x00000000	Reload register timer 1	
CTRL_PREDIV	0x0010	4 bytes	R/W	0x00000000	Control register for both prescalers	
RELD_PREDIV	0x0014	4 bytes	R/W	0x00000000	Reload register for both prescalers	
TIMO	0x0018	4 bytes	R	0x00000000	Timer 0 value register	
TIM1	0x001C	4 bytes	R	0x00000000	Timer 1 value register	
TIM2_CTRL	0x0020	4 bytes	R/W	0x00000000	Timer 2-Control Register	
TIM2	0x0024	4 bytes	R	0x00000000	Timer 2 count value register	

The timer registers are 32 bits in width. For read/write access of the timer registers to be meaningful, a 32-bit access is required. However, a byte-by-byte write operation is not intercepted by the hardware.

Table 10: Overview of Timer Registers

4.3.4 Timer Register Description

CTRL_ST	ATO F	R/W Addr.: 0x4000_2000 Default: 0x0000_0000			
Description	Control/status re	gister 0. Configuration and control bits for Timer No. 0.			
Bit No.	Name	Description			
0	Run/xStop *)	Stop/start of timer: 0: Timer is stopped 1: Timer is running Note: If this bit = 0, the timer interrupt is inactive (0) and the status bit (Bit 5) is reset (0).			
1	Load	 Trigger=Load the timer with the reload register value: 0: Not relevant 1: Timer is loaded with the value of the reload register (irrespective of Bit 0=Run/xStop) While this bit can be read back, it only has an effect at the instant of writing. Writing a value of 1 to this bit is sufficient to trigger the timer; a 0/1 edge is not needed. 			
2	Reload mode *)	Reload mode (continuous mode) of the timer: 0: Timer stops at value 00000000h 1: Timer is loaded with the reload register value when the timer value is 00000000h and the timer continues running Important note: If timers 0 and 1 are cascaded, the Reload mode setting of Timer 0 is irrelevant.			
3	Reserved	Not relevant (can be read/write-accessed)			
4	Reserved	Not relevant (read=0)			
5	Status	Timer status (writing is ignored) 0: Timer has not expired 1: Timer has expired (count is 0 and Run/xStop=Bit 0=1) Note: This bit can only be read as 1 if Run/xStop (Bit 0) is active (1).			
31-6	Reserved	Not relevant (read=0)			

Important note: The bits designated with *) are not applicable if the timers are cascaded! See CTRL_STAT1

CTRL_	STAT1	R/W	Addr.: 0x4000_2004	Default: 0x0000_0000			
Descriptio	n Control/statu	s register 1. Co	register 1. Configuration and control bits for Timer No. 1.				
Bit No.	Name	Descriptio	Description				
0	0 Run/xStop *)		Stop/start of timer: 0: Timer is stopped 1: Timer is running Note: If this bit = 0, the timer interrupt is inactive (0) and the status bit (Bit 5) is reset (0).				
1	Load	0: Not rele 1: Timer i (irrespe While this	 Trigger=Load the timer with the reload register value: 0: Not relevant 1: Timer is loaded with the value of the reload register (irrespective of Bit 0=Run/xStop) While this bit can be read back, it only has an effect at the instant of writing. Writing a value of 1 to this bit is sufficient to trigger the timer; a 0/1 edge is not needed 				
2	Reload mode *)	0: Timer s 1: Timer 00000000		er. er value when the timer value is			
3	Reserved		ant (can be read/write-accessed)				
4	Reserved	Not releva	ant (read=0)				
5	Status	0: Timer h 1: Timer h Note: This	Timer status (writing is ignored) 0: Timer has not expired 1: Timer has expired (count is 0 and Run/xStop=Bit 0=1) Note: This bit can only be read as 1 if Run/xStop (Bit 0) is active (1).				
6	Cascading	0: Not rele	Cascading of timer 0: Not relevant 1: Cascading of timers 0 and 1				
31-7	Reserved	Not releva	ant (read=0)				

Important note: The bits designated with *) are relevant to Timer 0 as well if the timers are cascaded!

RELD0		R	/ W	Addr.: 0x4000_2008	Default: 0x0000_0000		
RELD1		R	/ W	Addr.: 0x4000_200C	Default: 0x0000_0000		
Description Reload registers () to 1. Reload	value for timers 0 to 1.				
Bit No.	Name		Description				
31:0	Reload [31:0]		Reload value	Reload value of timer			

CTRL_	PREDIV	R/W	Addr.: 0x4000_2010	Default: 0x0000_0000			
Descriptio	n Control reg	jister for the two p	prescalers				
Bit No.	Name	Name Description					
0	Run/xStop_V0	0: Presca	Stop/start of prescaler 0: 0: Prescaler 0 is stopped 1: Prescaler 0 is running				
1	Load_V0	Trigger = 0: Not rel 1: Presca While this at the in	Trigger = loading of prescaler 0 with the reload register value: 0: Not relevant 1: Prescaler 0 is loaded with the value of the reload register While this bit can be read back, the trigger only has an effect at the instant of writing. The prescaler is loaded independently of the status of Run/xStop V0.				
2	Run/xStop_V1	Stop/star 0: Presca	t of prescaler 1: aler 1 is stopped aler 1 is running				
3	3 Load_V1		 Trigger = loading of prescaler 1 with the reload register value: 0: Not relevant 1: Prescaler 1 is loaded with the value of the reload register While this bit can be read back, the trigger only has an effect at the instant of writing. The prescaler is loaded independently of the statu of Run/xStop V1. 				
31-4	Reserved		ant (read=0)				

<u>Remark about the prescalers</u>: The current counter value of the prescalers cannot be read. In addition, there are no status bits for the prescalers indicating when the counter state is 0. The prescalers always run cyclically (in Reload mode).

RELD_PF	REDI	/ F	R/W	Addr.: 0x4000_2014	Default: 0x0000_0000
Description		Reload register for the two prescalers			
Bit No.	Name)	Description		
7:0	Prediv	/ [7:0]	Reload valu	ue of prescaler 0	
15:8	Prediv	/ [15:8]	Reload valu	ue of prescaler 1	
31-16	Reser	ved	Not relevan	t (read=0)	

TIM0		R	Addr.: 0x4000_201	8 Default: 0x0000_0000
TIM1		R	Addr.: 0x4000_201	C Default: 0x0000_0000
Description		Timer Register 0-	1. Values of timers 0-1.	
Bit No.	Name	Э	Description	
31:0	Time	r [31:0]	Current value of the timer	

TIM2_CT	RL	R	W Addr.: 0x4000_2020 Default: 0x0000_0000				
Description		Timer 2 Control F	egister				
Bit No.	Name	9	Description				
31:19	Rese	rved	Reserved				
18	Time	r_Mode	0: Cyclic 1: Retrigger via UART RXD signal (for RXD at log. '0')				
17	OneShot_Mode		 0: Cycle timer: Timer 2 is loaded with 0000h when timer value = reload value and continues to run 1: OneShot-Timer: Timer 2 stops when timer value = reload value 				
16	Run/xStop		0: Stop Timer 2, reset Timer 2, deactivate INT 1: Start Timer 2				
15:0	Reloa	ad [15:0]	Reload value of Timers 2				

TIM2		R	Addr.: 0x4000_2024	Default: 0x0000_0000	
Description		Timer Register 2. Values of Timer 2.			
Bit No.	Name	9	Description		
31:16	Rese	rved	Reserved		
15:0	Time	r [15:0]	Current value of Timer 2		

4.4 F-Timer Function

An F-timer is integrated in the ERTEC 200 in addition to the system timers. This timer works independently of the system clock and can be used for fail-safe applications, for example. The F-timer is triggered via the alternative "F_CLK" function at the external "BYP_CLK" input. External triggering is not possible if the ARM946E-S is operated in a reserved test mode (Config[4:3] = 11).

The following signal pins are available for the F-timer on the ERTEC 200.

• External counter cable 1 F_CLK

Description of function:

The asynchronous input signal of the external independent time base is applied at a synchronization stage via the BYP_CLK input pin (alternative F_CLK function). To rule out occurrences of metastable states at the counter input, the synchronization stage is implemented with three flip-flop stages. The count pulses are generated in a series-connected edge detection. All flip-flops run at the APB clock of 50 MHz.

The F_COUNTER_VAL register is reset using an asynchronous block reset or by writing the value 0x XXXX 55AA (X means "don't care) to the F-counter register "FCOUNT_RES". The next count pulse sets the counter to 0xFFFF FFFF and the counter is decremented at each additional count pulse. The FCOUNT_RES register is cleared again at the next clock cycle.

The count value can be read out by a 32-bit read access. While an 8-bit or 16-bit read access is possible, it is not useful because it can result in an inconsistency in the read count values.

Note on input frequency:

The maximum input frequency for the F-CLK is one-quarter of the APB clock. In the event of a quartz failure on the ERTEC 200, a minimum output frequency between 40 and 90 MHz is set at the PLL. This yields a minimum APB-CLK frequency of PLLOUTmin 40 MHz / 6 = 6.6666 MHz. To rule out a malfunction in the edge evaluation, the F-CLK can not exceed APB-CLKmin 6.66 MHz/4 = 1.6666 MHz

The figure below shows the function blocks of the F-counter.

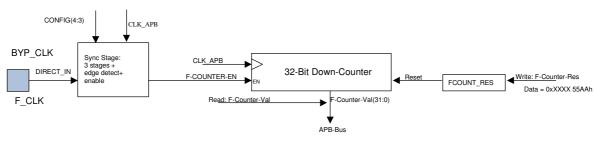


Figure 5: Block Diagram of F-Counter

4.4.1 Address Assignment of F-Timer Registers

F-Counter (Base Address 0x4000_2700)					
Register Name	Offset Address	Address Area	Access	Default	Description
F-COUNTER-VAL	0x0000	4 bytes	R	0x0000000	F-counter value register
F-COUNTER-RES	0x0004	4 bytes	W	0x00000000	Reset register for F-counter

The F-timer registers are **32 bits in width**. The registers can be written to in 32-bit width **only**.

Table 11: Overview of F-Timer Registers

4.4.2 F-Timer Register Description

F-COUNT	ER-۱	VAL R	Addr.: 0x4000_2700 Default: 0x0000_0000			
Description Timer value of F-counter			counter			
Bit No.	Name		Description			
31:0	F-CN	IT-VAL[31:0]	Timer value of F-timer			

F-COUNT	ER-I	RES W	Addr.: 0x4000_2704 Default: 0x0000_0000
Description Reset register for F-counters. A reset of the F-counter is performed only if 0xX 55AAh is entered in this register. Resets are thus possible via 16-bit and 3 accesses.			
Bit No.	Nam	е	Description
31:16	F-CNT-RES[31:16]		More significant word of F-counter reset (don't care)
15:0	F-CN	IT-RES[15:0]	Less significant word of F-counter reset

4.5 Watchdog Timers

Two watchdog timers are integrated in the ERTEC 200. The watchdog timers are intended for stand-alone monitoring of processes. The working clock of 50 MHz is derived from the PLL the same as the processor clock.

4.5.1 Watchdog Timer 0

Watchdog timer 0 is a 32-bit down-counter to which the WDOUT0_N output is assigned. This output can be used at the GPI0[15]-pin as an alternative function (see GPIO and signal descriptions). The timer is locked after a reset. It is started by setting the "Run/XStop_Z0" bit in the "CTRL/STATUS" watchdog register. A maximum monitoring time of 85.89 s (at a resolution of 20 ns) can be assigned.

4.5.2 Watchdog Timer 1

Watchdog timer 1 is a 36-bit down-counter in which only the upper 32 bits can be programmed. The WDOUT1_N output is assigned to watchdog timer 1. This output is not routed to the outside. Rather, it triggers a hardware reset internally. The timer is locked after a reset. It is started by setting the "Run/XStop_Z1" bit in the "CTRL/STATUS" watchdog register. A maximum monitoring time of 1374.3 s (at a resolution of 320 ns) can be assigned.

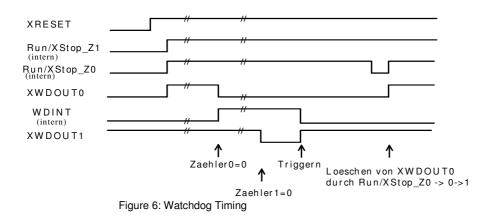
When the "LOAD" bit is set in the "CTRL/STATUS" watchdog register, <u>both</u> watchdog timers are reloaded with the applicable reload values of their reload registers. In the case of watchdog timer 1, bits [35:4] are loaded with the reload value. Bits 3:0 are set to 0.

The count values of the watchdog timers can also be read. When watchdog timer 1 is read, bits [35:4] are read out. The status of the two watchdog timers can be read out in the "CTRL/STATUS" register.

4.5.3 Watchdog Interrupt

The WDINT interrupt of the watchdog is routed to the FIQ interrupt controller. The FIQ0 interrupt is only active (High) if watchdog timer 0 is in "RUN mode" and watchdog timer 0 has reached zero. The exception to this is a load operation with reload value = 0.

4.5.4 WDOUT0_N


If the value is not equal to 0, the output changes to High. The output changes to Low again when the count has reached zero. The output can also be reset by stopping and then restarting watchdog timer 0.

The signal can be used as an external output signal at the GPIO[15] port if the alternative function is assigned for this pin. The output can thus inform an external host about an imminent watchdog event.

4.5.5 WDOUT1_N

The WDOUT_N signal is at High after a reset of when watchdog timer 1 goes to Stop. If watchdog timer 1 is started, WDOUT1_N changes to Low when the timer reaches zero. It remains Low until watchdog timer 1 is loaded with the reset value again by setting the "LOAD" bit. The exception is when reload value = 0 is loaded. A hardware reset is triggered internally with WDOUT1_N.

The figure below shows the time sequence of the watchdog interrupt and the two watchdog signals:

4.5.6 Watchdog Registers

The watchdog registers are 32 bits in width. For read/write access of the watchdog registers to be meaningful, a 32-bit access is required. However, a byte-by-byte write operation is not intercepted by the hardware.

To prevent the watchdog registers from being written to inadvertently, e.g., in the event of an undefined computer crash, the <u>writable</u> watchdog registers are provided with write protection. The upper 16 bits of the registers are so-called <u>key bits</u>. In order to write a valid value in the lower 16 bits, the key bits must be set to 0x <u>9876</u> yyyy (yyyy is the 16-bit value to be written).

Watchdog (Base Address 0x4000_2100)							
Register Name	Offset Address	Address Area	Access	Default	Description		
CTRL/STATUS	0x0000	4 bytes	R/W	0x00000000	Control/status register WD		
RELD0_LOW	0x0004	4 bytes	R/W	0x0000FFFF	Reload register 0_Low Bits 0-15		
RELD0_HIGH	0x0008	4 bytes	R/W	0x0000FFFF	Reload register 0_High Bits 16-31		
RELD1_LOW	0x000C	4 bytes	R/W	0x0000FFFF	Reload register 1_Low Bits 4-19		
RELD1_HIGH	0x0010	4 bytes	R/W	0x0000FFFF	Reload register 1_High Bits 20-35		
WDOG0	0x0014	4 bytes	R	0xFFFFFFFF	Watchdog timer 0 value register		
WDOG1	0x0018	4 bytes	R	0xFFFFFFFF	Watchdog timer 1 value register		

4.5.7 Address Assignment of Watchdog Registers

Table 12: Overview of WD Registers

4.5.8 Watchdog Register Description

CTRL/ST	TATUS	R /W Addr.: 0x4000_2100 Default: 0x0000_0000			
Description	Control/status r	register Configuration and control bits for the watchdog.			
Bit No.	Name	Description			
0	Run/xStop_V0				
1	Run/xStop_Z1	Enable/disable watchdog counter 1: 0: Watchdog counter 1 disabled 1: Watchdog counter 1 enabled Note: If this bit = 0, the WDOUT1_N output of the ERTEC 200 is passive (1) and the status bit of counter 1 (Bit 4) is "0".			
2	Load(Trigger)	 Watchdog trigger (load watchdog counters 0 and 1 with the value of the reload registers): 0: Do not trigger watchdog 1: Trigger watchdog While this bit can be read back, it only has an effect at the instant of writing. Writing a value of 1 to this bit is sufficient to trigger the watchdog counter; a 0/1 edge is not needed. The trigger signal acts on both watchdog counters. 			
3	Status_Counter 0	Watchdog status counter 0 (writing is ignored): 0: Watchdog counter 0 has not expired 1: Watchdog counter 0 has expired Note: This bit can only be read as '1' if Run/xStop_Z0 is active (1).			
4	Status_Counter 1	Watchdog status counter 1 (writing is ignored): 0: Watchdog counter 1 has not expired 1: Watchdog counter 1 has expired Note: This bit can only be read as '1' if Run/xStop_Z1 is active (1).			
15-5	Reserved	Not relevant (read=0)			
31-16	Key bits	Key bits for writing to this register (read=0). If bits 31-16=9876h, writing of bits 0-4 of this register has an effect; otherwise, no effect.			

RELD0_LOW R/W		R/V	Addr.: 0x4000_2104			
Description		Reload register 0_L	pad register 0_Low. Reload value for bits 15:0 of watchdog counter 0.			
Bit No.	Name	e Description				
15-0	Reloa	ad0 [15:0]	eload value for bits 15:0 of watchdog counter 0.			
31-16	Key t	bits	Key bits for writing to this register (read=0). If bits 31-16=9876h, writing of bits 0-15 of this register has an effect; otherwise, no effect.			

RELD0_HIGH R/W		R/V	Addr.: 0x4000_2108		
Description		Reload register 0_High. Reload value for bits 31:16 of watchdog counter 0.			
Bit No.	Name	e Description			
15-0	Reloa	ad0 [31:16]	Reload value for bits 31-16 of watchdog counter 0.		
31-16	Key b	bits	Key bits for writing to this register (read=0). If bits 31-16=9876h, writing of bits 0-15 of this register has an effect; otherwise, no effect.		

RELD1_LOW R/W		R/V	Addr.: 0x4000_210C Default: 0x0000_FFFF			
Description		Reload register 1_L	ter 1_Low. Reload value for bits 19:4 of watchdog counter 1.			
Bit No.	Name	Э	Description			
15-0	Reloa	ad1 [19:4]	Reload value for bits 19:4 of watchdog counter 1.			
31-16	Key t	bits	Key bits for writing to this register (read=0). If bits 31-16=9876h, writing of bits 0-15 of this register has an effect; otherwise, no effect.			

RELD1_HIGH R/W		R/V	Addr.: 0x4000_2110 Default: 0x0000_FFFF		
Description	cription Reload register 1_High. Reload value for bits 35:20 of watchdog counter 1.				
Bit No.	Name	Э	Description		
15-0	Reloa	ad1 [35:20]	Reload value for bits 35-20 of watchdog counter 1.		
31-16	Key b	bits	Key bits for writing to this register (read=0). If bits 31-16=9876h, writing of bits 0-15 of this register has an effect; otherwise, no effect.		

WDOG0		R	Addr.: 0x4000_2114	Default: 0xFFFF_FFFF	
Description		Watchdog value 0. Value of watchdog counter 0.			
Bit No.	Name	9	Description		
31-0	WDO	G0[31:0]	D] Bit [31:0] of watchdog counter 0.		

WDOG1		R	Addr.: 0x4000_2118	Default: 0xFFFF_FFFF		
Description		Watchdog value 1. Value of watchdog counter 1.				
Bit No.	Name	e	Description			
31-0	WDO	G1[36:4]	Bit [36:4] of watchdog counter 1.			

4.6 UART Interface

A UART interface is implemented in the ERTEC 200. The inputs and outputs of the UART interface are available as an alternative function at GPIO port [12:8]. For this purpose, the I/O must be assigned to the relevant inputs and outputs and the alternative function must be assigned (see <u>GPIO</u> register description). If the UART is used, the pins are no longer available as standard I/O. The data bit width for read/write access on the APB bus is 8 bits.

The following signal pins are available for the UART on the ERTEC 200.

- Transmit cable 1 **TXD**
- Receive cable
 1
 RXD
- Control cable 3 DCD_N
 CTS N
 - DSR_N

The UART is implemented as ARM Prime Cell[™] (PL010) macros. It is similar to standard UART 16C550. For a detailed description, refer to /5/.

The figure below shows the structure of the UART.

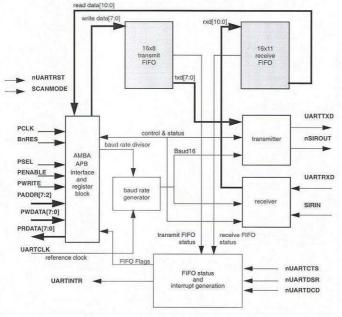


Figure 7: Block Diagram of UART

The UARTs differ from standard UART 16C550 as follows:

- Receive FIFO trigger level is set permanently to 8 bytes.
- Receive errors are stored in the FIFO.
- Receive errors do not generate an interrupt.
- The internal register address mapping and the register bit functions are different.

The following standard UART 16C550 features are not supported:

- 1.5 Stop bits
- "Forcing stick parity" function

The UART has an interrupt source:

UARTINTR UART – group interrupt

The interrupt is available on the IRQ interrupt controller of the ARM946E-S.

The UART can be controlled by the AEM946 processor or the DMA controller. In DMA mode, the FIFO must be switched off because FIFO does not indicate the fill level. Because the DMA controller is only a single-channel controller, only send or receive control can take place via the DMA controller. The other channel must be controlled via software.

The baud rate generation is derived from the internal 50 MHz APB clock. The resulting deviations from the standard baud rates used are so small that a secure data transmission is achieved. The baud rate is calculated according to the following formula:

This yields the following error tolerance calculation:

where BRI is the ideal baud rate

BRI

The following table shows the baud rate values to be set and the deviations from the standard baud rates. The associated error percentages are within the baud rate tolerance range.

BRI	BAUDDIV	BR	E. _P %
115200	26	115740	+0,47
76800	40	76219	-0,76
57600	53	57870	+0,47
38400	80	38580	+0,47
19200	162	19171	-0,15
14400	216	14400.9	+0,006
9600	325	9585.9	-0,15
2400	1301	2400.15	+0,006
1200	2603	1200.077	+0,006
110	28408	110.0004	+0.0003

Table 13: Baud Rates for UART at FUARTCLK=50 MHz

The UART can also be used as a BOOT medium if, for example, functions from an external PC are to be loaded to the ERTEC 200 and executed. The BOOT medium is selected by the BOOT[3:0] inputs during the active reset phase. The BOOT loader then takes over setting of the UART signal pins and loading of the program code. The "Boot strap loader" functionality is also used.

If the user does not utilize the UART, it can also be used as a debugging interface.

4.6.1 Address Assignment of UART Registers

The UART registers are 8 bits in width.

	UART (Start 0x4000_2300)						
Register Name	Offset Address	Address Area	Access	Default	Description		
UARTDR	0x0000	1 bytes	R/W	0x	Read/write data from interface		
UARTRSR/UARTECR	0x0004	1 bytes	R/W	0x00	Receive status register (read) Error clear register (write)		
UARTLCR_H	0x0008	1 bytes	R/W	0x00	Line control register high byte		
UARTLCR_M	0x000C	1 bytes	R/W	0x00	Line control register middle byte		
UARTLCR_L	0x0010	1 bytes	R/W	0x00	Line control register low byte		
UARTCR	0x0014	1 bytes	R/W	0x00	Control register		
UARTFR	0x0018	1 bytes	R	0x9-	Flag register		
UARTIIR/UARTICR	0x001C	1 bytes	R/W	0x00	Int identification register (read) Interrupt clear register (write)		
UARTILPR	0x0020	1 bytes	R/W	0x00	IrDA Low Power Counter Register (not supported in the ERTEC200)		
	0x0024 - 0x003C				Reserved		
	0x0040 - 0x0098				Reserved for test purposes		
	0x009C - 0x00FF				Reserved for future extension		

Table 14: Overview of UART Registers

4.6.2 UART Register Description

UARTDR		R/W	Addr.: 0x4000_2300	Default: 0x
Description	UART data registe	ers		
Bit No.	Name	Descrip	tion	
7 – 0		- If FIF (the fi <u>READ:</u> - If FIF - If FIF	O is enabled, the written data are ento O is disabled, the written data are ent rst word in the Transmit FIFO). O is enabled, the received data are end O is disabled, the received data are end rst word in the RECEIVE FIFO).	ered in the Transmit holding register

NOTE: When data are received, the UARTDR data register must be read out first and then the UARTRSR error register.

UARTRS	R/UARTECR R/	/W Addr.: 0x4000_2304 Default: 0x00					
Description	UART receive status UART receive error c						
Bit No.	Name	Description					
7 – 0	(Write)	Framing errors, parity errors, break errors, and overrun errors are deleted.					
0	FE (Read)	Framing error = 1 Received character does not have a valid stop bit					
1	PE (Read)	Parity error = 1 Parity of received character does not match the assigned parity in the UARTLCR_H register Bit 2.					
2	BE (Read)	Break error = 1 A break was detected. A break means that the received data are at LOW for longer than a standard character with all control bits.					
3	OE (Read)	Overrun-Error = 1 If the FIFO is full and a new character is received.					
7 – 4	(Read)	Reserved Value is undefined					

<u>NOTE:</u> When new data are displayed, the UARTDR data register must be read out first and then the UARTRSR error register. The error register is not updated until the data register is read.

UARTLCR_H F		R /W Addr.: 0x4000_2308 Default: 0x00				
Description UART line control register high byte bit rate and control register bits 22 to 16						
Bit No.	Name	Description				
0	BRK	Send break = 1 A LOW level is sent continuously at the Transmit output.				
1	PEN	Parity enable = 1 Parity check and generation are enabled.				
2	EPS	If PEN = 1Even parity select = 1Even parity select = 0Odd parity (0) for check and generation.				
3	STP2	Two stop bit select = 1 Two stop bits are appended at the end of the frame when sending. Two stop bit select = 0 One stop bit is appended at the end of the frame when sending.				
4	FEN	FIFO enable = 1 FIFO modes for sending and receiving are enabled. FIFO enable = 0 FIFO is disabled. Sending/receiving is then performed via 1-byte holding registers.				
6 – 5	WLEN	Word length indicates the number of data bits within a frame. 00 5-bit data 01 6-bit data 10 7-bit data 11 8-bit data				
7		Reserved Value is undefined				

UARTLCR_M		R/W	Addr.: 0x4000_230C	Default: 0x00	
Description	scription UART line control register middle byte baud rate high byte bits 15 - 8				
Bit No.	Name	ame Description			
7 – 0 BAUD DIVMS Baud rate divisor high byte					

UARTLCR_L		/ W	Addr.: 0x4000_2310	Default: 0x00	
Description UART line control register low byte baud rate low byte bits 7 - 0					
Bit No. Name Description					
7 – 0 BAUD DIVLS Bau		Baud rate divisor low byte			

NOTE: The baud rate divisor is calculated according to the following formula:

FUARTCLK

BAUDDIV = ------ - 1 16 * baud rate

Zero is not a valid divisor.

UARTLCR consists of 3 bytes. Writing of bytes is complete when UARTLCR_H has been written. If one of the first two bytes is to be changed, UARTLCR_H must be written at the end following the change. Example: Write UARTLCR_L and/or UARTLCR_M, write UARTLCR_H as acceptance. Write UARTLCR_H only means write and accept UARTLCR_H bits.

UARTCR	R	/W Addr.: 0x4000_2314 Default: 0x00						
Description	UART control registe	S						
Bit No.	Name	Description						
0	UARTEN	UART Enable = 1 UART sending/receiving of data is enabled						
1	SIREN	SIR enable = 1 IrDA SIR Endec is enabled. The bit can only be changed if UARTEN = 1						
2	SIRLP	IrDA SIR Low power mode						
3	MSIE	Modem status interrupt enable = 1 Interrupt is enabled						
4	RIE	Receive interrupt enable = 1 Receive interrupt is enabled						
5	TIE	Transmit interrupt enable = 1 Transmit interrupt is enabled						
6	RTIE	Receive timeout interrupt enable = 1 Receive timeout interrupt is enabled						
7	LBE	Loop back enable						

UARTFR	R	Addr.: 0x4000_2318 Default: 0x9-					
Description	UART flag registers						
Bit No.	Name	Description					
0	CTS	<u>Clear To Send</u> This bit is the inverse signal of UART input CTS.					
1	DSR	Data Set Ready This bit is the inverse signal of UART input DSR.					
2	DCD	Data Carrier Detect This bit is the inverse signal of UART input DCD.					
3	BUSY	<u>UART Busy</u> The bit is set if send data are in progress or if the Transmit FIFO is not empty.					
4	RXFE	 <u>Receive FIFO Empty</u> = 1 if FIFO is disabled and Receive holding register is empty FIFO is disabled and Receive FIFO buffer is empty 					
5	TXFF	Transmit FIFO Full = 1 if • FIFO is disabled and Transmit holding register is full • FIFO is enabled and Transmit FIFO buffer is full					
6	RXFF	 <u>Receive FIFO Full</u> = 1 if FIFO is disabled and Receive holding register is full FIFO is enabled and Receive FIFO buffer is full 					
7	TXFE	<u>Transmit FIFO Empty</u> = 1 if FIFO is disabled and Transmit holding register is empty FIFO is enabled and Transmit FIFO buffer is empty					

UARTIIR/	UARTICR R	W Addr.: 0x4000_231C Default: 0x00					
Description	UART interrupt identi UART interrupt clear	fication register (read) register (write)					
Bit No.	Name	Description					
0	MIS (Read)	Modem Interrupt Status This bit is set if UARTMSINTR is active.					
1	RIS (Read)	Receive Interrupt Status This bit is set if UARTRXINTR is active.					
2	TIS (Read)	Transmit Interrupt Status This bit is set if UARTTXINTR is active.					
3	RTIS (Read)	Receive Timeout Interrupt Status This bit is set if UARTRTINTR is active.					
7 – 4	(Read)	Reserved Value is undefined					
7 – 0	(Write)	Writing to this register deletes the MIS bit irrespective of the value written.					

UARTILPR R/		R/W	Addr.: 0x4000_2320	Default: 0x00	
Description		DA low power counter r pported in the ERTEC			
Bit No.	Name Description				
7 – 0 ILPDVSR 8-bit lov			power divisor value		

NOTE: The low power divisor is calculated according to the following formula:

FUARTCLK

ILPDVSR = ----- 1

FIrLPBAUD16 is nominally 1.8432 MHz

FIrLPBAUD16 Zero is not a valid divisor.

Synchronous Interface SPI 4.7

An SPI interface is implemented in the ERTEC 200. The inputs and outputs of the SPI interface are available as an alternative function at GPIO port [23:16]. For this purpose, the I/O must be assigned to the relevant inputs and outputs and the alternative function must be assigned (see GPIO register description). If the SPI interface is used, the pins are no longer available as standard GPIO. The base frequency for the internal bit rate generation is the 50 MHz APB clock. The data bit width for read/write access is 16 bits.

The following signal pins are available for the SPI interface on the ERTEC 200.

- SSPTXD Transmit cable 1
- Receive cable SSPRXD • 1
- SCLKIN/ SCLKOUT Clock cable 2 •
- Enables 2 SSPCTLOE/SSPOE • 2
- SFRs SFRMIN/SFRMOUT

The SPI interface is implemented as ARM Prime CellTM (PL021) Macros. For a detailed description, refer to /6/. The figure below shows the structure of the SPI macro.

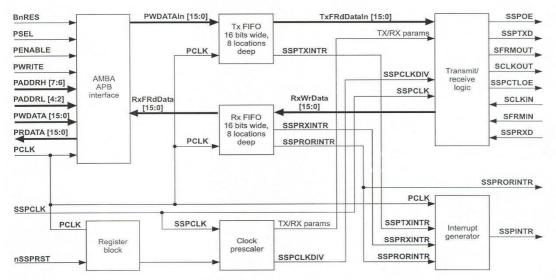


Figure 8: Block Diagram of SPI

The SPI interface supports the following modes:

- Motorola SPI-compatible mode
- Texas Instruments synchronous serial interface
- National Semiconductor microwire interface

The SPI interface has the following features:

- Separate send and receive FIFOs for 8 entries with 16-bit data width
- Data frame of 4 to 16 bits can be assigned
- The following bit rates can be assigned
 - 769 Hz to 25 MHz in master mode Maximum of 4.16 MHz in slave mode

The SPI interface has the following interrupt sources:

- SSPINTR Group interrupt
- **SSPRORINTR** Overrun error interrupt

Both interrupts are available on the IRQ interrupt controller of the ARM946E-S. The SPI module can be operated by the ARM946 or the internal DMA controller. For the synchronous clock output of the SPI interface, the following frequencies are calculated according to the assigned SPI registers:

50 MHz SCLKOUT = ------CPSDRV * (1+SCR)

The SPI parameters can assume the following values:

CPSDRV	From 2 to 254
SCR	From 0 to 255

This yields a frequency range of

٠	769 Hz	(CPSDRV = 254, SCR = 255) to
•	25 MHz[Master]/8.33 MHz[Slave]	(CPSDRV = 2, SCR = 0)

The SPI interface can also be used as a BOOT medium if, for example, functions from a serial EEPROM are to be loaded to the ERTEC 200 and executed. The BOOT medium is selected by the BOOT[3:0] inputs during the active reset phase. (See BOOT ROM description).

The BOOT loader then takes over setting of the SPI signal bins and loading of the program code. For BOOT mode with SPI interface, the GPIO[22] is used as a chip select signal.

4.7.1 Address Assignment of SPI Register

The SPI registers are **16 bits in width**. Reading or writing the SPI register is useful only in 16-bit access. However, a byteby-byte write operation is not intercepted by the hardware.

SPI (Base Address 0x4000_2200)							
Register Name	Offset Address	Address Area	Access	Default	Description		
SSPCR0	0x0000	2 bytes	R/W	0x0000	SSP control register 0		
SSPCR1	0x0004	1 bytes	R/W	0x00	SSP control register 1		
SSPDR	0x0008	2 bytes	R/W	0x	Rx/Tx FIFO data register		
SSPSR	0x000C	1 bytes	R	0x03	SSP status register		
SSPCPSR	0x0010	1 bytes	R/W	0x00	SSP clock prescale register		
SSPIIR/SSPICR	0x0014	1 bytes	R/W	0x00	Int identification register (read) Interrupt clear register (write)		
	0x0018 - 0x003C				Reserved		
	0x0040 - 0x0090				Reserved for test purposes		
	0x0094 - 0x00FF				Reserved for future extension		

Table 15: Overview of SPI Registers

4.7.2 SPI Register Description

SSPCR0	R	W/W	Addr.: 0x4000_	2200	Default: 0x0000	
Description	Control register	0. Cor	figuration frame forma	t and baud	rate for SPI.	
Bit No.	Name	Desc	ription			
3 - 0	DSS Data Size Select	0000 0001 0010 0011 0100 0101 0110	Reserved (undefined) Reserved (undefined) Reserved (undefined) 4-Bit Data 5-Bit Data 6-Bit Data 7-Bit Data 8-Bit Data	1001 1010 1011 1100 1101 1101	9-Bit Data 10-Bit Data 11-Bit Data 12-Bit Data 13-Bit Data 14-Bit Data 15-Bit Data 16-Bit Data	
5 - 4	FRF Frame Format	00Motorola SPI frame format01TI synchronous serial frame format02National Microwire frame format03Reserved (undefined operation)				
6	SPO Serial Clock Output Polarity	 Can only be used in Motorola SPI frame format. Received bits are engaged on the rising edge of SCLKIN/OUT. Sent bits are switched on the falling edge of SCLKIN/OUT. Received bits are engaged on the falling edge of SCLKIN/OUT. Sent bits are switched on the rising edge of SCLKIN/OUT. 				
7	SPH Phase of Transmission Bit	Can only be used in Motorola SPI frame format. 0 Received MSB is expected after frame signal has gone to Low 1 Received MSB is expected ½ clock cycle after frame signal has gone to Low				
15-8	SCR Serial Clock Rate	The contract of the contract o	alculation formula is as fo FSSPCLK VSR x (1 + SCR) = 1 to 255	llows:	n of the Transmit/Receive bit rate. fer to SSPCPSR Register)	

SSPCR1	R	W Addr.: 0x4000_2204 Default: 0x0000
Description	Control register	r 1. Configuration frame format and baud rate for SPI.
Bit No.	Name	Description
0	RIE	Receive FIFO interrupt enable: 0 = Receive FIFO half full or more interrupt SSPRXINTR is disabled 1 = Receive FIFO half full or more interrupt SSPRXINTR is enabled
1	TIE	Transmit FIFO interrupt enable: 0 = Transmit FIFO half full or less interrupt SSPTXINTR is disabled 1 = Transmit FIFO half full or less interrupt SSPTXINTR is enabled
2	RORIE	Receive FIFO overrun interrupt enable: 0 = FIFO overrun display interrupt SSPRORINTR is disabled (When this bit is deleted, the SSPRORINTR interrupt is also deleted if this interrupt was currently being enabled) 1 = FIFO overrun display interrupt SSPRORINTR is enabled
3	LBM	Loop back mode 0 = Normal serial operation is active 1 = Loop back mode is active. (The output of the Transmit serial shifter is connected internally to the input of the Receive serial shifter.)
4	SSE	Synchronous serial port enable: 0 = SPI port is disabled 1 = SPI port is enabled
5	MS	Master/slave mode select (This bit can only be changed if Bit 4 SSE = 0) 0 = Device is master (default) 1 = Device is slave
6	SOD	Slave-Mode-Output Disable(This bit is only relevant in slave mode MS = 1)In "Multiple slave systems," the master can send a broadcast message to all slaves inthe system in order to ensure that only one slave drives data at its Transmit output $0 = SPI$ can drive the SSPTXD output in slave mode $1 = SPI$ must not drive the SSPTXD output in slave mode

15-7	 Reserved	
	Read: Value is undefined	
	Write: Should always be written with zero	

SSPDR		R/V	Addr.: 0x4000_2208 Default: 0x
Description		SPI data register	
Bit No.	Nam	е	Description
15-0	DAT	A (15:0)	Transmit/Receive FIFO Read = Receive FIFO Write = Transmit FIFO (If < 16 bits of data, the user must write the data to the Transmit FIFO in the proper format. When data are read, they are read out correctly from the Receive FIFO.)

SSPSR		R Addr.: 0x4000_220C Default: 0x0000			
Description	SPI status reg	ister			
Bit No.	Name	Description			
0	TFE	Transmit FIFO empty			
		0 = Transmit FIFO is not empty			
		1 = Transmit FIFO is empty			
1	TNF	Transmit FIFO not full			
		0 = Transmit FIFO is full			
		1 = Transmit FIFO is not full			
2	RNE	Receive FIFO not empty			
		0 = Receive FIFO is empty			
		1 = Receive FIFO is not empty			
3	RFF	Receive FIFO full			
		0 = Receive FIFO is not full			
		1 = Receive FIFO is full			
4	BSY	SPI busy flag			
		0 = SPI is			
		1 = SPI is sending and/or receiving a frame or the Transmit FIFO is not			
		empty.			
15-5		Reserved			
		Read: Value is undefined			
		Write: Should always be written with zero			

SSPCPSF	2	R/V	V Addr.: 0x4000_2210 Default: 0x0000		
Description SPI clock prescale register					
Bit No.	Bit No. Name Description				
7 - 0	CPS	SDVSR Clock prescale divisor (Value between 2 and 254. For formula, refer to SSPCR0 Register.) When the value is read, bit 0 is always zero.			
15-5	5		Reserved Read: Value is undefined Write: Should always be written with zero		

SSPIIR/S	SPICR	R/W Addr.: 0x4000_2214 Default: 0x0000		
Description		dentification register (read) lear register (write)		
Bit No.	Name	Description		
0	RIS (Read)	SPI Receive FIFO service request interrupt status 0 = SSPRXINTR is not active 1 = SSPRXINTR is active		
1	TIS (Read)	SPI Transmit FIFO service request interrupt status 0 = SSPTXINTR is not active 1 = SSPTXINTR is active		
2	RORIS (Read)	SPI Receive FIFO overrun interrupt status 0 = SSPRORINTR is not active 1 = SSPRORINTR is active		
15-3	(Read)	Read: Reserved Value is undefined		
15-0	(Write)	Write: Receive overrun interrupt is deleted without check to determine whether data are currently being written.		

4.8 System control register

The system control registers are ERTEC 200-specific control registers that can be read and written to from the individual AHB masters from the APB bus. For a listing of all system control registers and their address assignments as well as a detailed description, refer to the following sections.

4.8.1 Address Assignment of System Control Registers

The system control registers are 32 bits in width.

System Control Registers (Base address 0x4000_2600)						
Register Name	Offset Address	Address Area	Access	Default	Description	
ID_REG	0x0000	4 bytes	R	0x40270100	ID ERTEC 200	
BOOT_REG	0x0004	4 bytes	R	Boot-Pins	Boot mode pins Boot[3:0]	
SER_CFG_REG	0x0008	4 bytes	R	Config-Pins	ERTEC 200 config pins Config[6:1]	
RES_CTRL_REG	0x000C	4 bytes	W/R	0x00000004	Control register for reset of ERTEC 200	
RES_STAT_REG	0x0010	4 bytes	R	0x0000004	Status register for reset of ERTEC 200	
PLL_STAT_REG	0x0014	4 bytes	R/W	0x00070005	Status register for PLL/FIQ3	
QVZ_AHB_ADR	0x0028	4 bytes	R	0x0000000	Address of incorrect addressing on multilayer AHB	
QVZ_AHB_CTRL	0x002C	4 bytes	R	0x0000000	Control signals of incorrect addressing on multilayer AHB	
QVZ_AHB_M	0x0030	4 bytes	R	0x0000000	Master detection of incorrect addressing on multilayer AHB	
QVZ_APB_ADR	0x0034	4 bytes	R	0x0000000	Address of incorrect addressing on AHB	
QVZ_EMIF_ADR	0x0038	4 bytes	R	0x0000000	Address that leads to timeout on EMIF	
MEM_SWAP	0x0044	4 bytes	R/W	0x0000000	Memory Swapping in Segment 0 on the AHB bus	
M_LOCK_CTRL	0x004C	4 bytes	R/W	0x00000000	AHB master lock enable. Master- selective enable of AHB lock functionality	
ARM9_CTRL	0x0050	4 bytes	R/W	0x00001939	Controller of ARM9 and ETM inputs	
ARM9_WE	0x0054	4 bytes	R/W	0x0000000	Write protection register for ARM9_CTRL	
ERTEC 200_TAG	0x0058	4 bytes	R	0x000101xx	TAG number of current switching status	
PHY_CONFIG	0x005C	4 bytes	R/W	0x0000000	PHY1/PHY2 Configuration registers	
PHY_STATUS	0x0060	4 bytes	R	0x00000000	PHY1/PHY2 Status registers	

UART_CLK 0x00	70 4 bytes	R/W	0x00000000	UART clock selection 50MHz/6MHz
---------------	------------	-----	------------	------------------------------------

Table 16: Overview of System Control Registers

4.8.2 System Control Register Description

ID_REG	REG R		Addr.: 0x4000_2600 Default: 0x4027_0100		
Description	on Identification of ERTEC 200.				
Bit No.	Name	Э	Description		
3116	ERTEC200-ID ERTEC 200 identifier: 4027h				
158	HW-RELEASE HW release: 01h				
70	Rese	rved	Reserved		

BOOT_REG R		Addr.: 0x4000_2604	Default: Bootpins[3:0]
	Boot mode pins B	OOT[3:0] can be read	
Name	9	Description	
Rese	rved	Reserved	
BOO	T[3:0]	Reading of Boot[3] pin	
	Name Rese		Boot mode pins BOOT[3:0] can be read Name Description Reserved

CONFIG_	REG	R		Addr.: 0x4000_2608	Default:Configpins[6:1]	
Description		ERTEC 200 config pins CONFIG[6:1] can be read.				
Bit No.	Name	9	Description			
317	Reserved Reserved		Reserved			
61	CONFIG[6:1] Reading of (CONFIG[6:1] pin			
0	Reserved Reserve		Reserved			

RES_CTRL_REG W/		W/R	/R Addr.: 0x4000_260C Default: 0x0000_0004				
Description	n Control regis	ter for reset of	ERTEC 200				
Bit No.	Name	Descript	ion				
3113	Reserved	Reserve	Reserved				
12:3	PULSE_DUR	T _{-RES_PUL} T _{-CLK} .: n: The inte	Pulse duration of SW or watchdog reset. T. _{RES_PULSE} = (8 x n + 8) x T. _{CLK} .; T. _{CLK} : APB clock period (1/50 MHz = 20 ns) n: Value of PULSE_DUR (0 1023) The integrated PHYs require a reset duration of > 100µs. This requires th setting n > 625 .				
2	EN_WD_SOFT_ 0: The IRTE switch controller is not reset for the watchdog/soft rese RES_IRTE 1: The IRTE switch controller is reset for the watchdog/soft reset.						
1	XRES_SOFT	1: Softwa	: Software reset (not latching)				
0	WD_RES_FREI 1: Enable watchdog reset						

RES_ST	AT _	REG R	Addr.: 0x4000_2610			
Description Status register for reset of ERTEC 200. Only the bit of the last reset event occurrence is set. The two other bits are reset.						
Bit No.	Name	Э	Description			
313	Rese	rved	Reserved			
2	2 HW RESET 1: La		1: Last reset was PowerOn or Hardware reset			
1	SW_RESET 1: Last reset was Software reset		1: Last reset was Software reset			
0	WD_	RESET	1: Last reset was Watchdog reset			

PLL_STA	T_REG R/W	Addr.: 0x4000_2614				
Description	Status register for	r PLL of ERTEC 200 and interrupt control for FIQ3				
Bit No.	Name	Description				
3118	Reserved	Reserved				
17	INT_MASK_LOSS	INT_MASK_LOSS: Interrupt masking for INT_LOSS_STATE 0: Interrupt is enabled 1: Interrupt is masked Read/write accessible				
16	INT_MASK_LOCK	INT_MASK_LOCK: Interrupt masking for INT_LOCK_STATE 0: Interrupt is enabled 1: Interrupt is masked Read/write accessible				
156	Reserved	Reserved				
5	INT_QVZ_EMIF_ STATE	Interrupt timeout at EMIF (INT_QVZ_EMIF_ STATE): 0: Interrupt request is inactive 1: Interrupt request is active Read access only; This bit represents the value of Bit 7 of EMIF register Extended_Config.				
4	Reserved	Reserved				
3	INT_LOSS_STATE	Interrupt loss state (INT_LOSS_STATE): 0: Interrupt request is inactive 1: Interrupt request is active This bit indicates whether the PLL input clock has failed (latching). Read/write accessible				
2	INT_LOCK_STATE	Interrupt lock state (INT_LOCK_STATE): 0: Interrupt request is inactive 1: Interrupt request is active This bit indicates whether the PLL was in unlocked state (latching). Read/write accessible				
1	PLL_INPUT_CLK_LO	Loss: Monitoring status of PLL input clock				
0	Read access only Lock: Engages at operating frequency; status of PLL: 0: PLL_IS unlocked 1: PLL is locked This bit represents the current lock state of the PLL. Read access only					

QVZ_AHB_ADR R		Addr.: 0x4	000_2628	Default: 0x0000_0000	
Description Address of incorre			ct addressing on multilayer	AHB	
Bit No.	Name	Э	Description		
31:0	31:0 QVZ_AHB_ADR		Address		

QVZ_AHI	B_CT	RL R	Addr.: 0x4000_262C Default: 0x0000_0000		
Description Control signals of			an incorrect addressing on the multi-layer AHB		
Bit No.	Name		Description		
31:7	Rese	rved	Reserved		
6:4	HBUI	RST	HBURST		
3:1	HSIZE		HSIZE		
0			HWRITE		
	HWR	ITE	0: HREAD		
			1: HWRITE		

QVZ_AHB_M		R	Addr.: 0x4000_2630		
Description		Master identifier of an incorrect addressing on the multilayer AHB			
Bit No.	Name	e	Description		
31:4	Rese	rved	Reserved		
3	QVZ	AHB_DMA	DMA		
2	QVZ	AHB_IRT	IRT		
1	QVZ	AHB_LBU	LBU		
0	QVZ	AHB ARM946	ARM946		

QVZ_APB_ADR R		R R	Addr.: 0x4000_2634		
Description Address of incorre			ect addressing on AHB		
Bit No.	it No. Name		Description		
31:0	QVZ_APB_ADR		Address		

QVZ_EMIF_ADR R		Addr	:0x4000_2638	Default: 0x0000_0000		
Description Address that lead			s to timeout on EMIF			
Bit No.	Name	Э	Description			
31:0 QVZ_EMIF_ADR Addr		Address				

MEM_SV	MEM_SWAP R/V		W Addr.: 0x4000_2644 Default: 0x0000_0000			
Description Memory Swapping in Segment 0 on the AHB (ROM, EMIF-SDRAM, EMIF-Standard-Mer						
Bit No.	Name	6	Description			
31:2	Rese	rved	Reserved			
1:0	MEM_SWAP		Selection of memory in Segment 0 on the AHB: 00: Boot ROM starting with Addr 0h 01: EMIF-SDRAM starting at Adr 0h 10: EMIF-Standard-Memory starting at Adr 0h 11: Reserved			

Do not set the MEM_SWAP register to 0x3. This setting is not supported.

If you want to lock I-cache and show an interrupt-vector-table at address 0x0 use the setting "Cache Lockdown" in CP15 register 9 of ARM946E-S.

M_LOCK	_CTF	R R	Addr.: 0x4000_264C	Default: 0x0000_0000		
Description		AHB master lock	able. Master-selective enable of AHB lo	ock functionality.		
Bit No.	Name	Э	Description			
31:4	Rese	rved	Reserved			
3	Reserved		Select arbitration algorithm for AHB arbiter (ARB_MODE). 0: Round robin 1: Fixed priority assignment This bit should not be changed (default: round robin)!			
2	Rese	rved	Lock enable of AHB master IRT: 0: Lock disabled 1: Lock enabled			
1	Reserved		Lock-Enable AHB-Master LBU: 0: Lock disabled 1: Lock enabled			
0	Rese	rved	Lock enable of AHB master ARM9: 0: Lock disabled 1: Lock enabled			

ARM9_C	ARM9_CTRL R/		W Addr.: 0x4000_2650 Default: 0x0000_1939		
Description		nputs that are not accessible from external pins. only be written to if the Write enable bit is set in the ARM9_WE register. This be changed for debugging purposes!			
Bit No.	Name	е	Description		
31:14	Rese	rved	Reserved		
13	BIGE	NDIAN	BIGENDIAN (read only)		
12	DISA CLK	BLE_GATE_THE	DisableGateTheClk: 1: ARM9 processor clock runs freely 0: ARM9 processor clock is paused by a Wait-for-Interrupt.		
11	DBG	EN	DBGEN: Enable of embedded ARM9 debugger 1: Debugger is enabled. 0: Debugger is disabled.		
10	MICE	BYPASS	MICEBYPASS: Bypass of TCK synchronization to the ARM9 clock. 0: TCK is synchronized to ARM 9 clock 1: TCK is not synchronized to ARM 9 clock		
9	INITF	RAM	INITRAM: Indicates whether the TCMs are enabled after a (SW) reset. 1: TCMs enabled 0: TCMs disabled This bit is only reset by the external RESET_N reset. SW and watchdog resets have no effect on this bit.		
8:0	SYSC	OPT[8:0]	ETM-Option SYSOPT(8:0): Indicates the implemented ETM options. Default value: 139H		

ARM9_WE R/		W	Addr.: 0x4000_2654	Default: 0x0000_0000		
Description Write access register for			ster for the AF	RM9_CTRL register		
Bit No.	Name	Э	Description			
31:1			Reserved			
0	WE_ARM9_CTRL		1: ARM9_C1	For ARM9_CTL register TRL can be write accessed. TRL is read-only.		

ERTEC 2	00_T	AG R	/W	Addr.: 0x4000_2658	Default: 0x0001_01xx			
Description Tag number of cu			Irrent ASIC sw	rent ASIC switching state.				
Bit No.	Name	9	Description					
31:24	Rese	rved	Reserved: 00h					
24:16	16 REVISION ID		Revision-ID: 01h					
15:8	VERSION_ID		Version-ID: 01h					
7:0	DEBUG_ID		Debug-ID: 18	8h				

PHY_CONFIG R/			W Addr.: 0x4000_265C Default: 0x0000_0000			
Description Configuration of P			HY1 and PHY2			
Bit No.	Name	Э	Description			
31:17			reserved			
16	PHY	_RES_SEL	0: PHY reset connected to chip reset like IRTE			
			1: PHY reset connected to IRTE output reset_phy_n _1_			
15 :14			Reserved			
13	P2_AUTOMDIXEN		1: Enable AutoMDIX state machine			
			0: Disable AutoMDIX state machine			

 $[\]overline{ \left[\frac{1}{2} - \frac{1}{2} \right]}$ If CONFIG(6,5,2)="111" Bit not writeable, fix to default value.

P2_PHY_MODE	000: 10BASE-T HD, Auto-Neg disabled				
	001: 10BASE-T FD, Auto-Neg disabled				
	010: 100BASE-TX/FX HD, Auto-Neg disabled 011: 100BASE-TX/FX FD, Auto-Neg disabled				
	100: 100BASE-TX HD announced, Auto-Neg enabled				
	101: 100BASE-TX HD announced, Auto-Neg enabled, Repeater Mode				
	110: PHY starts in Power Down Mode				
	111: Auto-Neg enabled, AutoMDIX enabled, everything is possible				
P2_FX_MODE	1: The 100BASE-FX Interface is enabled				
	(only meaningful when P2_PHY_Mode ="010" or "011")				
	0: The 100BASE-FX Interface is disabled				
P2_PHY_ENB	0: PHY2 disabled (Powerdown Mode)				
	1: PHY2 enabled ^{1, 3}				
	Reserved				
P1_AUTOMDIXEN	1: Enable AutoMDIX state machine				
	0: Disable AutoMDIX state machine				
P1_PHY_ MODE	000: 10BASE-T HD, Auto-Neg disabled				
	001: 10BASE-T FD, Auto-Neg disabled				
	010: 100BASE-TX/FX HD, Auto-Neg disabled				
	011: 100BASE-TX/FX FD, Auto-Neg disabled				
	100: 100BASE-TX HD announced, Auto-Neg enabled				
	101: 100BASE-TX HD announced, Auto-Neg enabled, Repeater Mode				
	110: PHY starts in Power Down Mode				
	111: Auto-Neg enabled, AutoMDIX enabled, everything is possible				
P1_FX_MODE	1: The 100BASE-FX interface is enabled				
	(only meaningfule when P1_PHY_Mode ="010" or "011")				
	0: The 100BASE-FX interface is disabled				
P1_PHY_ENB	0: PHY1 disabled (Powerdown Mode)				
	1: PHY1 enabled ^{1,2}				
	P2_PHY_ENB P1_AUTOMDIXEN P1_PHY_ MODE P1_FX_ MODE				

PHY_ST	ATUS	S R	Addr.: 0x4000_2660 Default: 0x0000_0000		
Description		Status of PHY1 ar	nd PHY2		
Bit No.	Name	Description			
31:9			Reserved		
8	P2_P	WRUPRST	0: PHY2 in Powerdown mode or internal reset is still active 1: PHY2 is ready for operation		
7:1	Reserved				
0	P1_P	WRUPRST	0: PHY1 in Powerdown mode or internal reset is still active 1: PHY1 is ready for operation		

UART_CLK R/\		W	Addr.: 0x4000_	2670	Default: 0x0000_0000	
Description Enables switching of the UART clock from 50 MHz (default) to 6 MHz. At 6 MHz rate of 187.5 kBd is possible.			6 MHz. At 6 MHz, a UART baud			
Bit No.	Name	e Description				
31:1	Rese	rved	Reserved			
0	UART TAKT		UART clock:			
			0: 50 MHz			
			1: 6 MHz			

² If the PHY is 'Disabled' and then 'Enabled' again, a Disable Time of > 100 μ s must be adhered to by the SW. ³ P1/2_PHYENABLE = 1 triggers a reset extension internally in PHY beyond 5.2 ms. During this time, the PLL and all analog and digital components are powered up. The ready to operate status is signaled in the PHY_Status-Register with P1/2_PWRUPRST = 1.

5 **General Hardware Functions**

5.1 **Clock Generation and Clock Supply**

The clock system of the ERTEC 200 basically consists of four clock systems that are decoupled through asynchronous transfers.

This includes the following clock systems:

- ARM946E-S together with AHB bus, APB bus, and IRT .
- I BH •
- **JTAG** Interface
- PHYs and Ethernet MACs

Clock Supply in ERTEC 200 5.1.1

The required clocks are generated in the ERTEC 200 by means of internal PLL and/or through direct infeed. The following table provides a detailed list of the clocks:

MODULE	CLOCK SOURCE	FREQUENCY	
ARM946ES	PLL	50/100/150 MHz (scalable)	
AHB/EMIF/ICU/LBU	PLL	50 MHz	
IRTE (except MAC-MII)	PLL	50/100 MHz	
APB	PLL	50 MHz	
JTAG	JTAG-Clock	0-10 MHz	
MAC-MII/PHY	CLKP_A	25 MHz	

Table 17: Overview of ERTEC 200 Clocks

A PLL is integrated to generate the internal clocks in the ERTEC 200. The clock supply of the PLL takes place via the following input pins:

- 25 MHz guartz at the inputs CLKP A and CLKP B or \triangleright
- ≻ 25 MHz clock generator at input CLKP A

The input clock is divided down by a factor of 12.5 MHz and fed into the PLL. The PLL generates a clock of 300 MHz, which supplies the following clock generator. This generates all system clock required for the ERTEC 200.

The following figure shows the generation of the ERTEC 200 clocks:

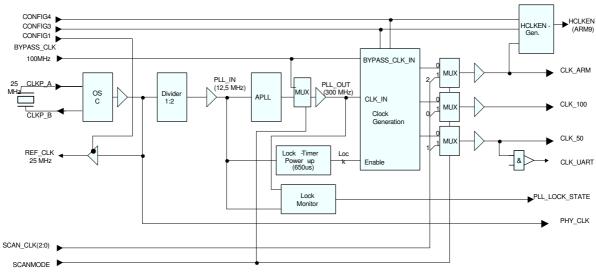


Figure 9: Clock Generation in ERTEC 200

Synchronous clocks CLK 50MHz and CLK 100MHz are used primarily in the ERTEC 200. For the ARM946E-S processor, the required processor clock can be set via the configuration pins CONFIG[4:3]:

- CONFIG4, CONFIG3 = 00 → ARM946 processor clock is 50 MHz. \triangleright
- CONFIG4, CONFIG3 = 01 → ARM946 processor clock is 100 MHz. ≻ ≻
 - CONFIG4, CONFIG3 = 10 → ARM946 processor clock is 150 MHz.
- CONFIG4, CONFIG3 = 11 → \triangleright Reserved

5.1.2 JTAG Clock Supply

The clock supply for the JTAG interface is implemented using the **JTAG_CLK** pin. The frequency range is between 0 and 10 MHz. The boundary scan and the ICE macro cell of the ARM946E-S are enabled via the JTAG interface.

5.1.3 Clock Supply for PHYs and Ethernet MACs

Both Ethernet MACs are connected to the integrated PHYs via the MII interface. The clock supply of the PHYs takes place via the internal 25MHz clock **CLKP_A**. From this the PHYs generate the clock signals **RX_CLK** and **TX_CLK**, which are necessary for the Ethernet MACs.

Instead of the internal PHYs, external PHYs can also be connected to the ERTEC 200. In this case, the connections of the MII interface of the MACs on the LBU interface must be made available.

The clock can be supplied to the external PHYs via the output pin REF_CLK (25MHz clock).

The output pin can be enabled/disabled with the configuration pin CONFIG1:

CONFIG1 = 0 → Clock 25 MHz is enabled at output REF_CLK

CONFIG1 = 1 → Clock 25 MHz is disabled at output REF CLK

When external PHYs are used or to debug the Ethernet interfaces, the MII interface signals are made available at output pins of the LBU interface. In both cases, the LBU interface is no longer available for connecting an external host processor.

Selection of the MII interface signals on LBU pins takes place via configuration pins:

- > CONFIG[6,5,2] = 111b →
- Connection of external PHYs
- > CONFIG[6,5,2] = 011b →

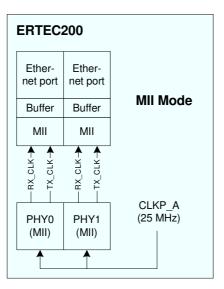


Figure 10: Clock Supply of Ethernet Interface

5.2 Reset Logic of the ERTEC 200

The reset logic resets the entire circuitry of the ERTEC 200. The reset system of the ERTEC 200 is enabled by the following events:

- Hardware reset via external **RESET N** pin
- Software reset via XRES SOFT bit in the RES CTRL REG system control register
- Watchdog reset via watchdog timer overflow

The triggering reset event can be read out in the **RES_STAT_REG** system control register.

5.2.1 PowerOn reset

The external hardware reset circuitry is connected at the **RESET_N** pin of the ERTEC 200. Activating the hardware reset causes an internal reset of the entire circuitry including the clock system of the ERTEC 200 and saves the BOOT and CONFIG pins to the internal registers. The hardware reset must be present steadily for **at least 35 µs** (see figure below). Afterwards, the PLL powers up within tLock = 645 μ s. In the ERTEC 200, the PowerOn reset phase is increased for this time, and the clock system is not switched in until the end of the startup phase. Communication from the debugger via the JTAG interface is not possible during this time. The following figure shows the power-up phase of the PLL after a reset.

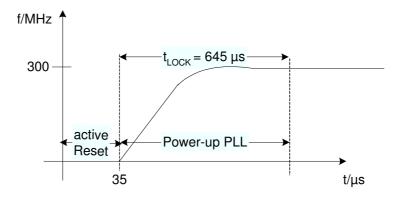


Figure 11: Power-Up Phase of the PLL

The lock status of the PLL is monitored by the hardware. Loss of the input clock and PLL not locked status is signaled with interrupt FIQ3. The state of the PLL can also be read out in the **PII_STAT_REG** system control register. A filter is integrated at the **RESET_N** input, which suppresses spikes up to 5 ns.

The **SRST_N** reset signal is available for the debugger. The signal is activated while **RESET_N** is active and the internal PowerOn-reset extension is running. This enables the debugger to recognize the PowerOn-reset phase.

5.2.2 Hardware Reset

The hardware reset is triggered via the bidirectional **SRST_N** pin (open drain output). The reset is normally only activated by the debugger. During the active hardware-reset phase, the entire internal logic is reset <u>without</u> the clock system. In addition, the configuration and boot pins are <u>not</u> read in or saved, either.

During the hardware reset phase, the debugger can communication with the embedded ICE logic via the JTAG interface, enabling a single-step trace from the reset address. As with the **RESET_N** input a filter that suppresses spikes up to 5 ns is also integrated here.

For booting after a hardware reset, the boot mode that was saved during the PowerOn reset is used. During PowerON and hardware reset, the PowerOn/Hardware-reset bit is set in the **RES_STAT_REG** system control register, which remains unaffected by the triggered reset function. This register can be evaluated after a restart.

5.2.3 Watchdog Reset

The watchdog reset involves software monitoring by the hardware. Monitoring is based on a time setting in the watchdog timer. This is started when the watchdog is activated. Retriggering the timer at a specified reload value prevents the watchdog reset from being triggered. If the timer is not retriggered, the watchdog reset is enabled after the timer expires if the watchdog function is active with the **WD_RES_FREI** bit. The watchdog reset is controlled in the ERTEC 200 by means of assignable pulse stretching (PV). The watchdog reset resets the complete ERTEC 200 circuit. As is the case with the hardware reset, the watchdog reset bit is set in the **RES_STAT_REG** system control register,

As is the case with the hardware reset, the watchdog reset bit is set in the **HES_SIAI_HEG** system control register, which remains unaffected by the triggered reset function. This register can be evaluated after a restart. Via the alternative function, the watchdog event on GPIO[15] can be signaled to an external host processor. The watchdog reset also resets the IRT switch controller when the **EN_WD_SOFT_RES_IRTE** bit is set in the **RES_CTRL_REG** system control bit.

For booting after a watchdog reset, the boot mode that was saved during the PowerOn reset is used.

5.2.4 Software reset

A software reset can be triggered in the ERTEC 200 by setting the **XRES_SOFT** bit in the reset control register. The software reset bit is set in the **RES_STAT_REG** system control register when the reset is triggered. The **RES_STAT_REG** system control register is unaffected by the triggered reset function and can be evaluated after restart. The software reset also resets the IRT switch controller when the **EN_WD_SOFT_RES_IRTE** bit is set in the **RES_CTRL_REG** system control bit.

For booting after a software reset, the boot mode that was saved during the PowerOn reset is used.

5.2.5 IRT Switch Reset

The switch module can be reset by means of a register in the IRT switch. The reset function of the switch module is retained until the bit is revoked again. The internal PHYs can be reset either via the RESET_N pin or by the IRT switch controller via PHY_RES_N. The selection of the reset used for the PHYs is specified with the **PHY_RES_SEL** bit in the **PHY_CONFIG** system control register. Whenever the SMI interface is not activated in the IRT switch the PHY_RES_N is active and, if the appropriate selection is made, maintains the PHYs in reset state (little power loss from the PHYs) for this phase.

5.3 Address Space and Timeout Monitoring

Monitoring mechanisms are incorporated in the ERTEC 200 for detection of incorrect addressing, illegal accesses, and timeout. The following I/O are monitored:

- AHB bus
- APB bus
- EMIF

5.3.1 AHB Bus Monitoring

Separate address space monitoring is assigned for each of the four AHB masters (ARM946, IRT, DMA, LBU). If an AHB master addresses an unused address space, the access is acknowledged with an error response and an FIQ2 interrupt is triggered at the ARM946 interrupt controller. The incorrect access address is stored in the QVZ_AHB_ADR system control register and the associated access type (read, write, HTRANS, HSIZE) is stored in the QVZ_AHB_CTRL system control register. The master that caused the access error is stored in the QVZ_AHB_M system control register. In the case of an access violation by LBU as an AHB master, an interrupt request is also enabled and stored in the IRT switch. The LBU interrupt LBU IRQ0 N is output on the LBU bus.

If more than one AHB master causes an access violation simultaneously (accurate within one AHB clock cycle), only the violation of the highest priority AHB master is indicated in the registers (see Section 3.1.1).

Diagnostic registers QVZ_AHB_ADR, QVZ_AHB_CTRL, and QVZ_AHB_M remain locked for subsequent access violations until the QVZ_AHB_CTRL register has been read.

5.3.2 APB Bus Monitoring

The APB address space is monitored on the APB bus. If incorrect addressing is detected in the APB address space, access to the APB side and AHB side is terminated with an "OKAY" response because the APB bus does not recognize response-type signaling. An FIQ1 interrupt is triggered on the ARM946 interrupt controller. The incorrect access address is placed in the **QVZ_APB_ADR** system control register. The **QVZ_APB_ADR** system control register is locked for subsequent address violations until it has been read.

5.3.3 EMIF Monitoring

In the case of the EMIF, the external **RDY_PER_N** ready signal is monitored. In order to enable monitoring, "Extended_Wait_Mode" must be switched on in the **Async_Bank_0_Config** to **Async_Bank_3_Config** configuration registers. If one of the four memory areas that are selected via the CS_PER0_N to CS_PER3_N chip select outputs is addressed, the memory controller of the ERTEC 200 waits for the RDY_PER_N input signal. The monitoring duration is set in the **ASYNC_WAIT_CYCLE_CONFIG** EMIF register and is active if timeout monitoring (Bit 7) is set in the **EXTENDED_CONFIG** EMIF register. The specified value (maximum of 255) multiplied by 16 AHB clock cycles yields the monitoring time, i.e., the time that the memory controller waits for the Ready signal. After this time elapses, a Ready signal is generated for the memory controller and an FIQ3 interrupt is generated for the ARM946 interrupt controller. In addition, the address of the incorrect access is stored in the **QVZ_EMIF_ADR** system control register. The **QVZ_EMIF_ADR** system control register is locked for subsequent address violations until it has been read. The set FIQ3 interrupt is then removed if timeout monitoring is reset.

5.4 Configuration Options on the ERTEC 200

EMIF pins, which are stored in a **SER_Con_REG** SYSTEM CONTROL register during an active RESET_N PowerOn reset, are present for setting various operating modes. These pins are available as EMIF pins during normal operation.

CONFIG[1]	\rightarrow	Enable/disable REF_CLK output

- CONFIG[2] → Enable/disable LBU function
- $CONFIG[4,3] \rightarrow Select 50/100/150 \text{ Mhz clock frequency for ARM946E-S}$
- $\mathsf{CONFIG[6,5]} \rightarrow \qquad \mathsf{If LBU is disabled: PHY debug, GPIO[44:32], select ETM9 on LBU port}$

Config [6]	Config [5]	Config [4]	Config [3]	Config [2]	Config [1]	Meaning
-	-	-	-	-	1	REF_CLK tristate
-	-	-	-	-	0	REF_CLK output (25 MHz)
-	1	-	-	0	-	LBU = On, LBU-CFG: LBU_WR_N has read/write control
-	0	-	-	0	-	LBU = On, LBU-CFG: Separate read and write line
1	-	-	-	0	-	LBU = On, LBU_POL_RDY: LBU_RDY_N is high active
0	-	-	-	0	-	LBU = On, LBU_POL_RDY: LBU_RDY_N is low active
0	1	-	-	1	-	LBU = off, GPIO44-32 = on int. PHYs = On, ext. MII = PHY debugging, ETM9 = Off
1	0	-	-	1	-	LBU = off, GPIO44-32 = on int. PHYs = On, ext. MII = Off, ETM9 = On
1	1	-	-	1	-	Reserved
-	-	0	0	-	-	ARM clock 50 MHz
-	-	0	1	-	-	ARM clock 100 MHz
-	-	1	0	-	-	ARM clock 150 MHz
-	-	1	1	-	-	Reserved

Table 18: Configurations for ERTEC 200

6 External Memory Interface (EMIF)

In order to access an external memory area, an External Memory InterFace is incorporated in the ERTEC 200. The interface contains one SDRAM memory controller and one SRAM memory control each for asynchronous memory and I/O. Both interfaces can be assigned separately as active interfaces. That is, the data bus is driven actively to High at the end of each access. The internal pull-ups keep the data bus actively at High. External pull-ups are not required. When writing, this occurs after the end of the strobe phase. When reading, this occurs after a specified time has elapsed after the end of the strobe phase to avoid driving against the externally read block. For the SDRAM controller, this time is equivalent to one AHB bus cycle. For the asynchronous controller, the time is equivalent to the time required for the hold phase to elapse, which corresponds to the time from the rising edge of RD_N to the rising edge of the chip select signal. By default, the active interface is switched on.

The following signal pins are available for the EMIF on the ERTEC 200.

- Data bus 32 bit **D[31 : 0]**
- Address bus 24 bit A[23:0]
- Memory CS 4 CS_PER0_N CS_PER3_N
- Byte enable 4 BE0_DQM0_N BE3_DQM3_N
- RD/WR Async. 2 RD_N/WR_N
- Ready 1 RDY_PER_N
 - DIR 2 DTR_N/OE_DRIVER_N
- SDRAM 5 CLK_SDRAM/CS_SDRAM_N /RAS_SDRAM_N /CAS_SDRAM_N /WE_SDRAM_N

The <u>SDRAM controller</u> has the following features:

- 16-bit or 32-bit data bus width can be assigned
- PC100 SDRAM-compatible (50 Mhz clock frequency)
- 1 bank with a maximum of 128 Mbytes of SDRAM or
- 2 banks, each with 64 Mbytes of SDRAM or
- 4 banks, each with 32 Mbytes of SDRAM for 32-bit data bus width
- Supports various SDRAMs with the following properties:
 - CAS latency 2 or 3 clock cycles
 - 1/2/4 internal banks can be addressed (A1:0)
 - 8/9/10/11 bits column address (A13, 11:2)
 - Maximum of 13 row addresses (A14 : 2)

SDRAMS with a maximum of 4 banks are supported. The SDRAM controller can keep all 4 banks open simultaneously. In terms of addresses, these four banks correspond to one quarter of the SDRAM address area on the AHB bus. As long as the alternating accesses are in the respective page, no page miss can occur. The refresh counter is always in operation. Moreover, it cannot be switched off when SDRAM is not being used.

The asynchronous memory controller has the following features:

- 8-bit, 16-bit, or 32-bit data bus width can be assigned
- 4 chip selects
- Maximum of 16 Mbytes per chip select can be addressed
- Different timing can be assigned for each chip select
- Ready signal can be assigned differently (synchronous/asynchronous) for each chip select
- Chip select CS_PER0_N can be used for a BOOT operation from external memory
- Data bus width of the external memory for a BOOT operation is selected via the BOOT[3:0] input pins
- Default setting "Slow timing" for BOOT operation
- Timeout monitoring can be assigned
- Supports the following asynchronous blocks
 - SRAM
 - o Flash PROM
 - External I/O blocks

When setting the asynchronous timing, you must ensure that the access length (with ready control) does not exceed the duration of 2 SDRAM refresh operations. Failure to do so can cause some refresh operations to be lost. Note that 32-bit access to blocks that are 8 bits wide requires 4 access attempts. During this time, the SDRAM cannot be refreshed.

6.1 Address Assignment of EMIF Registers

EMIF (Base Address 0x7000_0000)						
Register Name	er Name Offset Address Address Area		Access	Default	Description	
Revision_Code_and _Status	0x0000	4 bytes	R	0x00000100	Revision code and status register	
Async_Wait_Cycle _Config	0x0004	4 bytes	W/R	0x40000080	Async wait cycle config register	
SDRAM_Bank_ Config	0x0008	4 bytes	W/R	0x000020A0	SDRAM bank config register	
SDRAM_Refresh _Control	0x000C	4 bytes	W/R	0x00000190	Setting of refresh rate Indication for timeout	
Async_BANK0_ Config	0x0010	4 bytes	W/R	0x3FFFFFF2	Timing/data bus width for access via async. interface CS_PER0_N	
Async_BANK1_ Config	0x0014	4 bytes	W/R	0x3FFFFFF2	Timing/data bus width for access via async. interface CS_PER1_N	
Async_BANK2_ Config	0x0018	4 bytes	W/R	0x3FFFFFF2	Timing/data bus width for access via async. interface CS_PER2_N	
Async_BANK3_ Config	0x001C	4 bytes	W/R	0x3FFFFFF2	Timing/data bus width for access via async. interface CS_PER3_N	
Extended_Config	0x0020	4 bytes	W/R	0x03030000	Setting of additional functionalities	

The EMIF registers are 32 bits in width. These registers can only be written to with double words.

Table 19: Overview of EMIF Registers

6.2 EMIF Register Description

Revision Code and Status			R	Addr.: 0x7000_0000	Default: 0x0000_0100
Description		Revision code and status register			
Bit No.	Name	Э	Description		
3116	Rese	rved	Reserved		
158	MAJOR_REVISION		01h		
70	MINC	R_REVISION	00h		

Async wa	it cycle config	W/R Addr.: 0x7000_0004 Default: 0x4000_0080
Description	Async wa	t cycle config register
Bit No.	Name	Description
31	Reserved	Reserved
30	WP	Wait polarity 0: Wait if RDY_PER_N = 0 1: Wait if RDY_PER_N = 1
298	Reserved	Reserved
70	MAX_EXT_WA	T This value multiplied by 16 is equivalent to the number of AHB clock cycles that the async. controller waits for RDY_PER_N before access is terminated with timeout IRQ.

SDRAM	Bank Config	W/R Addr.: 0x7000_0008 Default: 0x0000_20A0					
Description	SDRAM bank	config register					
Bit No.	Name	Description					
3114	Reserved	Reserved					
13*	CL	CAS latency 0: SDRAM is activated with CAS latency = 2 1: SDRAM is activated with CAS latency = 3					
1211	Reserved	Reserved					
108*	ROWS	000: 8-row address lines 001: 9-row address lines 010: 10-row address lines 011: 11-row address lines 100: 12-row address lines 101: 13-row address lines 110: Reserved 111: Reserved					
7	Reserved	Reserved					
64	IBANK	Internal SDRAM bank setup (number of banks in the SDRAM) 000: 1 bank 001: 2 banks 010: 4 banks 011 111: Reserved					
3	Reserved	Reserved					
20	PAGESIZE	Page size 000: SDRAM with 8-column address lines 001: SDRAM with 9-column address lines 010: SDRAM with 10-column address lines 011: SDRAM with 11-column address lines 100111: Reserved					

*) Attention: Writing to SDRAM_Bank_Config(15:7) executes the Mode Register Set command on the SDRAM if Bit 29 (init_done) is set in the SDRAM_Refresh_Control register (i.e., the SDRAM power-up sequence has been executed).

SDRAM F	SDRAM Refresh Control			Addr.: 0x7000_000C	Default: 0x0000_0190			
Description Setting of refresh rate, indication for timeout								
Bit No.	Nam	e	Description					
31	Rese	rved	Reserved					
30	AT		Asynchronou	Asynchronous timeout				
	read	only	Set to 1 in ev	ent of timeout				
29	INIT_	DONE	SDRAM initia	alization done				
	read	only		ower-up sequence is running				
			1: SDRAM power-up sequence is complete					
2813	Reserved Reserved							
120	REFRESH_RATE Refresh rate							
	Number of AHB clock cycles between 2 SDRAM refresh cycles				ORAM refresh cycles			

The refresh counter is always on, even if SDRAM is not used. In this case, refresh_rate = 0x1FFF (maximum value) should be set to keep the load as small as possible.

Async Ba	ink 0 (Config	W/R	Addr.: 0x7000_0010	Default: 0x3FFF_FFF2
Async Ba	ink 1 (Config	W/R	Addr.: 0x7000_0014	Default: 0x3FFF_FFF2
Async Ba	ink 2 (Config	W/R	Addr.: 0x7000_0018	Default: 0x3FFF_FF2
Async Bank 3 Config			W/R	Addr.: 0x7000_001C	Default: 0x3FFF FFF2
					nous interface CS_PER0_N -
		·			
Bit No.	Name		Description		
31	EWS_XAS		Extend Wait Timing Mode 0: RDY_PER_N = asynchronous 1: RDY_PER_N = synchronous		
30	EW		Extend Wait mode 0: RDY_PER_N = don't care 1: Wait until RDY_PER_N is active		
2926	W_SU		Write strobe setup cycles (w_su) AHB clock cycles between valid address, data, and chip select and falling edge of the write signal.		
2520	W_STROBE		Write strobe duration cycles (w_strobe + 1) AHB clock cycles between falling and rising edges of the write signal.		
1917	W_H	OLD	Write strobe hold cycles (w_hold + 1) AHB clock cycles between rising edge of the write signal and change of address, data, and chip select.		
1613	R_SU		Read strobe setup cycles (r_su) AHB clock cycles between valid address and chip select and falling edge of the read signal (RD_N).		
127	R_STROBE		Read strobe duration cycles (r_strobe + 1) AHB clock cycles between falling and rising edges of the read signal.		
64	R_HOLD		Read strobe hold cycles (r_hold + 1) AHB clock cycles between rising edge of the read signal and change of address and chip select.		
32	Reserved		Reserved		
10	ASIZI	Ξ	Asynchronou: 00: 8-bit data 01: 16-bit dat 1x: 32-bit data	bus a bus	

Extende	ed Config	W/R Addr.: 0x7000_0020 Default: 0x0303_0000		
Descriptio	n Setting of addit	ional functionalities		
Bit No.	Name	Description		
31	Reserved	Reserved		
30	TEST_1	Test Mode 1 0: 200 μs delay after system reset (SDRAM power-up) 1: Delay after system reset is immediately terminated		
29	TEST_2	Test Mode 2 0: Normal function 1: All SDRAM accesses are misses		
2826	Reserved	Reserved		
25	ADB	Active data bus After each access to the SDRAM, the data bus is driven actively to 1 in order to support integrated pull-ups.		
24	ASDB	Asynchronous active data bus After each access to the asynchronous area, the data bus is driven actively to 1 at the end of the Hold phase in order to support integrated pull-ups.		
2320	Reserved	Reserved		
19	TEST_3	Test Mode 3 0: Normal function 1: DTR_N = Test Output		
18	Reserved	Reserved		
1716	BURST_LENGTH	SDRAM burst length 00: 1 01: 2 10: Full Page, Read INCR_S burst length = 4 11: Full Page, Read INCR_S burst length = 8		
15	Reserved	Reserved		
14	TRCD/TCD	Time between the SDRAM commands Activate and read/write, precharge and activate 0: 1 AHB clock cycles 1: 2 AHB clock cycle		
139	Reserved	Reserved		
8	SDSIZE	SDRAM bank size 0: 32-bit data bus 1: 16-bit data bus		
7	ATIRQ	0: Timeout watchdog for asynchronous accesses disabled 1: Timeout watchdog for asynchronous accesses enabled After the watchdog expires (256 AHB clock cycles), an interrupt is triggered. Setting Bit 7 to 0 deletes interrupt source.		
60	Reserved	Reserved		

Programming specification for EMIR registers:

For a correct setting of the SDRAM, the values for Burst_Length and SDRAM bank width must match up in the Extended Config register. The bits must be set before the **MODE-Register-SET** command is initiated; otherwise, they are not transferred to the SDRAM. The Mode-Register-Set command is initiated by writing to the bits [15:8] of the **SDRAM-Bank-Config** register when bit 29 = 1 in the **SDRAM Refresh Control** register.

SDRAM 32-bit data width: Extended Config[8] = 0

Extended Config[17:16] = 11 Full Page, Read INCR_S Burst Length = 8 Extended Config[17:16] = 10 Full Page, Read INCR_S Burst Length = 4 Extended Config[17:16] = 00 Burst Length = 1

SDRAM 16-bit data width: Extended Config[8] = 1

Extended Config[17:16] = 11 Full Page, Read INCR_S Burst Length = 8 Extended Config[17:16] = 10 Full Page, Read INCR_S Burst Length = 4 Extended Config[17:16] = 01 Burst Length = 2

All other settings cause malfunctions

The **Mode Register Set** command is initiated by writing to the bit in the register SDRAM_Bank_Config[15:8]. (Register SDRAM_Refresh-Control[29] =1)

7 Local Bus Unit (LBU).

The ERTEC 200 can also be operated from an external host processor. The LBU bus interfaces are available for this purpose:

The bus system is selected using the CONFIG[2] input pin.

CONFIG[2] = 0 LBU bus system is active CONFIG[2] = 1 LBU bus system is inactive (supplemental function PHY debug, ETM trace, GPIO[44:32] can be activated)

The LBU is a 16-bit data interface.

The following signal pins are available for the LBU on the ERTEC 200.

•	Data bus	16 bit	LBU_D[15 : 0]
•	Address bus	21 bit	
•	Memory CS	1	LBU_CS_M_N
•	Register CS	1	LBU_CS_R_N
•	RD/WR config	1	LBU_CFG
•	RD/WR	2	LBU_WR_N / LBU_RD_N
•	Ready	2	LBU_POL_RDY, LBU_RDY_N
•	Byte selection	2	LBU_BE[1 : 0]
•	Page segment selection	2	LBU_SEG[1 : 0]
•	Interrupt outputs	2	LBU_IRQ0_N, LBU_IRQ1_N

Four different pages within the ERTEC 200 can be accessed via the LBU. Each page can be set individually.

The settings for the four pages are made via the LBU page registers. Five page registers are available per page. These registers are used for the size, offset, and access width settings of the page. The "LBU_CS_R_N" chip select signal can be used to access the page registers.

The following settings are possible for each page:

- Access size of a page between 256 bytes and 2 Mbytes with 2-page range register
- Offset (segment) of page in 4-Gbyte address area with 2-page offset register
- Access type (data bit width) with 1 page control register

After the page register has been configured, the ERTEC 200 internal address area is accessed via the LBU_CS_M_N chip select signal.

The LBU supports accesses to the address area with separate read and write cables or with a common read/write cable.

The access type is set using the Config[5] configuration input.

CONFIG[5] RD/WR Control	
0 Separate RD/WR cable	
1	LBU_WR_N has RD/WR control

The polarity of the ready signal is set via the **Config[6]** configuration input.

CONFIG[6]	LBU_RDY_N
0	Low active
1	High active

LBU_RDY_N is a tristate output and must be pulled to his "ready" level by an external pull-down or pull-up resistor. During an access from the LBU-Interface to the ERTEC 200 (CS with RD or WR activ), the LBU_RDY_N switched to inactiv (Wait) first. LBU_RDY_N will be active for a 50 MHz-Clock if data will be read or write. After that LBU_RDY_N switched back to tristate. The external Pull- (up/down) resistor drives the ready state.

The four segments are addressed via the two LBU_SEG[1:0] inputs.

LBU_SEG[1:0]	Addressed Segment
00	LBU_PAGE0
01	LBU_PAGE1
10	LBU_PAGE2
11	LBU_PAGE3

7.1 Page Range Setting

The page size of each page is set in the PAGEx_RANGE_HIGH and PAGEx_RANGE_LOW range registers (x = 0 to 3). Together, the two page range registers yield a 32-bit address register. The size of the page varies between 256 bytes and 2 MBytes. Therefore, Bits 0 to 7 and Bits 22 to 31 of the PAGEx_RANGE register remain unchanged at a value of 0 even if a value of 1 is entered. If no bit at all is set in one of the PAGE RANGE registers, the range of this page is set to 256 bytes, by default. If several bits are set to 1 in one of the PAGE RANGE registers, the range is always calculated based on the most significant bit (see Example 2 in the table below).

PAGEx_RANGE_HIGH	PAGEx_RANGE_LOW	Size of Page x
31 2423 16	15 8 7 0	
0000000 00 010000	01000000 00000000	1 Mbyte
0000000 00 00011 0	0000000 0000000	256 Kbytes
0000000 00 00010	0000000 0000000	128 Kbytes
0000000 00 00000	0000001 0000000	256 bytes

Table 20: Setting of Various Page Sizes

The largest page determines the number of addresses that have to be connected to the LBU. In the page range table above, the largest page is 1 Mbyte (i = Bit 20). The maximum addresses are calculated from Amax = 20 - 1. In this case, address cables A [19:0] are required.

This addressing mechanism results in a mirroring of the specified page size in the total segment.

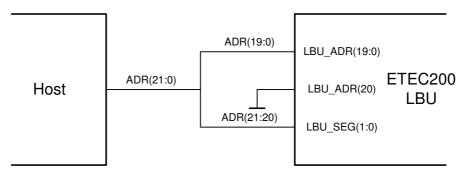
7.2 Page Offset Setting

The page offset of each page is set in the PAGEx_OFFSET_HIGH and PAGEx_OFFSET_LOW range registers (x = 0 to 3). Together, the two page offset registers yield a 32-bit address register. The register is evaluated in such a way that the offset is evaluated only up to the highest set bit of the associated page range register. These bits are then switched to the AHB bus as the highest address. The following table shows some examples for an offset calculation.

PAGEx	OFFSET	HIGH	PAGEx	OF	FSET	LOW	Offset for Page x
31	2423	16	15	8	7	0	
01000	000 0000	0000	00000	000	0000	0000	1 Gbyte
00010	000 000	0000	00000	000	0000	0000	256 Mbytes
00000	000 000	0001	00000	000	0000	0000	64 Kbytes
00000	000 0000	0000	00000	001	0000	0000	256 bytes

Table 21: Setting of Various Offset Areas

Because the host computer can always access the page registers, the pages can be reassigned at any time This is useful, for example, if a page is to be used to initialize the I/O. If access to this address area is no longer required after the initialization, the page can then be reassigned in order to access other address areas of the ERTEC 200.


7.3 LBU Address Mapping

The following table illustrates an example of the ERTEC 200 Address Mapping from the Perspective of an External Host Processor:

Seg(1:0)	AD(19:0)	SEGMENT Distribution	SEGMENT Size	Comment
00	0_0000h	1MB	1MB	Page SDRAM (1 Mbyte)
00				Range: 0010 0000h
00	F_FFFh			Offset: 2000 0000h
01	0_000h	64k	1MB	Page KRAM (64 Kbytes)
01				Range: 0001 0000h
01	0_FFFFh			Offset: 1010 0000h
01	1_0000h	64k		
01		Mirrored		
01	F_FFFh			
10	0_000h	128k	1MB	Page ext. SRAM (128 Kbytes)
10				Range: 0002 0000h
10	1_FFFFh			Offset: 3000 0000h
10	2_0000h	128k		
10		Mirrored		
10	F_FFFh			
11	0_000h	16k	1MB	Page APB I/O
11				Range: 0000 4000h
11	0 3FFFh			Offset: 4000 0000h
11	0_4000h	16k		
11		Mirrored		
11	F_FFFh			

Table 22: Address Mapping from the Perspective of an External Host Processor on the LBU Port

In this example, a maximum of 1 MB is addressed. The addresses A[19:0] of the host processor are wired to the LBU_ADR [19:0] for this purpose. In addition, the addresses A[21:20] are necessary for the segment selection. These are connected to the LBU pins LBU_SEG[1:0].

Figure 12: Interconnection of Addresses between Host and ERTEC 200 LBU

7.4 Page Control Setting

The user can use the page control register to set the type of access to the relevant page. Certain areas of the ERTEC 200 must be implemented with a 32-bit data access in order to ensure data consistency. For other areas, an 8-bit or 16-bit data access is permitted. The following table shows which ERTEC 200 address areas require 32-bit access.

ERTEC 200 Area	32-Bit Access Required	32-Bit Access Possible
System control register	Х	-
Timer 0 / 1 / 2	x	-
F-counter	x	-
Watchdog	x	-
IRT register	x	-
SDRAM	-	х
KRAM (as user RAM)	-	х
KRAM (Switch RAM)	-	х
Residual APB I/O (UARTs, SPI, GPIO)	-	x

Table 23: Summary of Accesses to Address Areas of ERTEC 200

A setting is made in the paging control registers to indicate whether the relevant page area is addressed according to a 16-bit or 32-bit organization. In the case of a page with 16-bit organization, each byte or word access is forwarded to the AHB bus. In the case of a page with 32-bit organization,

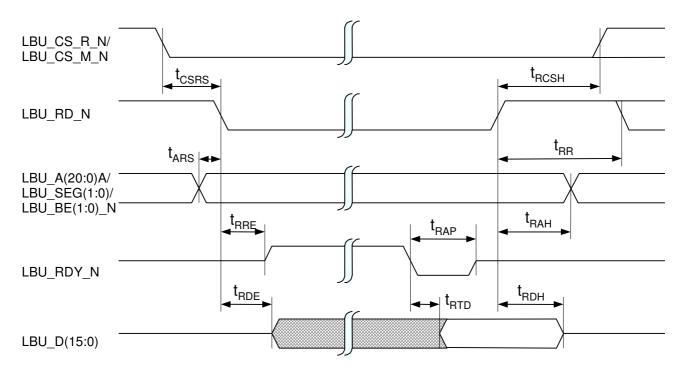
32-bit read access is implemented on the AHB bus when the LOW word is read. In addition, the LOW word is forwarded and the HIGH word is stored temporarily in the LBU. A subsequent read access to the HIGH word address outputs the temporarily stored value. This ensures consistent reading of 32-bit data on a 16-bit bus. In the case of 32-bit write access, the LOW word is first stored temporarily in the LBU area. When the HIGH word is write accessed, a 32-bit access to the AHB bus is implemented. Byte accesses are forwarded directly to the AHB bus and are therefore not useful for a 32-bit page.

When the host accesses address areas of the ERTEC 200, a distinction must be made between 16-bit and 32-bit host processors.

The data width of the variables is defined for a 16-bit host processor. The various compilers implement the accesses in any order. In the case of a 32-bit access by the user software, it must be ensured that LOW word access to the 32-bit address area precedes HIGH word access.

In the case of a 32-bit host processor, the access order is defined by setting the "external bus controller" of the host processor. In this case, the address area access must be assigned as "Little Endian access."

7.5 Host Access to the ERTEC200


When a host accesses the ERTEC 200, it behaves like a 16-bit Little Endian block with 8-bit and 16-bit access options. The following accesses are supported:

LBU_BE1_N	LBU_BE0_N	LBU_A0	AHB Access
1	0	0	8-Bit LOW
0	1	1	8-Bit HIGH
0	0	0	16-Bit
	Rest	Not permitted	

Table 24: Host Access to Address Areas of ERTEC 200

Access by the host is asynchronous to the AHB clock of the ERTEC 200. For this reason, it is synchronized with the AHB clock. The following figures show different read- and write sequences with the timings:

7.5.1 LBU Read from ERTEC 200 with separate Read/Write line (LBU_RDY_N active low)

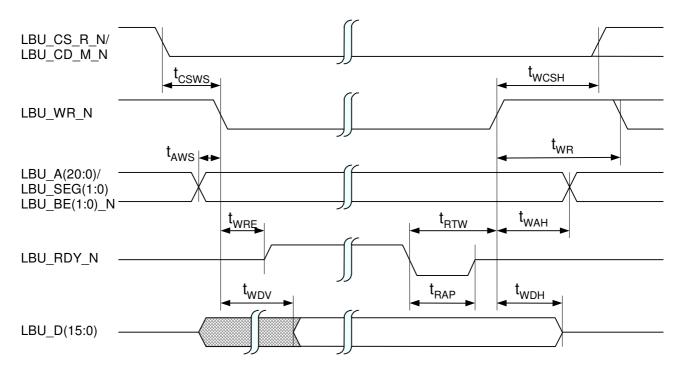


Figure 13: LBU-Read-Sequence with separate RD/WR line

Parameter	Description	Min	Max
t _{CSRS}	chip select asserted to read pulse asserted delay	0 ns	
t _{ARS}	address valid to read pulse asserted setup time	0 ns	
t _{RRE}	read pulse asserted to ready enabled delay	5 ns	12 ns
t _{RDE}	read pulse asserted to data enable delay	5 ns	12 ns
t _{RAP}	ready active pulse width	17 ns	23 ns
t _{RTD}	ready asserted to data valid delay		5 ns
t _{RCSH}	read pulse deasserted to chip select deasserted delay	0 ns	
t _{RAH}	address valid to read pulse deasserted hold time	0 ns	
t _{RDH}	data valid/enabled to read pulse deasserted hold time	0 ns	12 ns
t _{RR}	read recovery time	25 ns	

Table 25: LBU Read access timing with seperate Read/Write line

7.5.2 LBU Write to ERTEC 200 with separate Read/Write line (LBU_RDY_N active low)

Figure 14: LBU-Write-Sequence with separate RD/WR line

Parameter	Description	Min	Max
t _{csws}	chip select asserted to write pulse asserted delay	0 ns	
t _{AWS}	address valid to write pulse asserted setup time	0 ns	
t _{wre}	write pulse asserted to ready enabled delay	5 ns	12 ns
t _{WDV}	write pulse asserted to data valid delay		40 ns
t _{RAP}	ready active pulse width	17 ns	23 ns
t _{wcsh}	write pulse deasserted to chip select deasserted delay	0 ns	
t _{WAH}	address valid to write pulse deasserted hold time	0 ns	
t _{RTW}	ready asserted to write pulse deasserted delay	0 ns	
t _{wDH}	data valid/enabled to read pulse deasserted hold time	0 ns	
t _{wR}	write recovery time	25 ns	

Table 26: LBU Write access timing with seperate Read/Write line

7.5.3 LBU Read from ERTEC 200 with common Read/Write line (LBU_RDY_N active low)

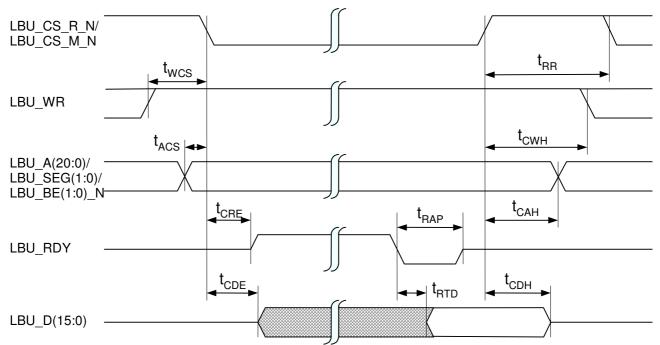
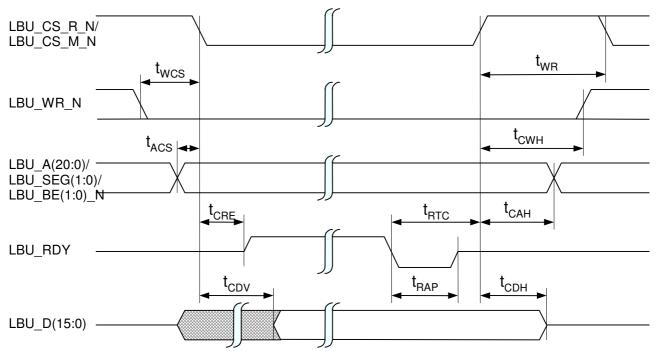



Figure 15: LBU-Read-Sequence with common RD/WR line

Parameter	Description	Min	Max
t _{wcs}	write signal deasserted to chip select asserted setup time	2 ns	
t _{ACS}	address valid to chip select asserted setup time	0 ns	
t _{CRE}	chip select asserted to ready enabled delay	5 ns	12 ns
t _{CDE}	chip select asserted to data enable delay	5 ns	12 ns
t _{RAP}	ready active pulse width	17 ns	23 ns
t _{RTD}	ready asserted to data valid delay		5 ns
t _{сwн}	write signal inactive to chip select deasserted hold time	0 ns	
t _{RAH}	address valid to chip select deasserted hold time	0 ns	
t _{RDH}	data valid/enabled to chip select deasserted hold time	0 ns	12 ns
t _{RR}	read recovery time	25 ns	

Table 27: LBU Read access timing with common Read/Write line

7.5.4 LBU Write to ERTEC 200 with common Read/Write line (LBU_RDY_N active low)

Figure 16: LBU-Write-Sequence with common RD/WR line

Parameter	Description	Min	Max
t _{wcs}	write signal asserted to chip select setup time	2 ns ¹	
t _{ACS}	address valid to chip select asserted setup time	0 ns	
t _{CRE}	chip select asserted to ready enabled delay	5 ns	12 ns
t _{CDV}	chip select asserted to data valid delay		40 ns
t _{RAP}	ready active pulse width	17 ns	23 ns
t _{CWH}	write signal deasserted to chip select deasserted hold time	0 ns	
t _{CAH}	address valid to chip select deasserted hold time	0 ns	
t _{RTC}	ready asserted to chip select deasserted delay	0 ns	
t _{CDH}	data valid/enabled to chip select deasserted hold time	0 ns	
t _{wR}	write recovery time	25 ns	

Table 28: LBU Write access timing with common Read/Write line

 1 The setup time t_{WCS} must be maintained under all circumstances; otherwise the LBU unit drives the ERTEC 200 databus.

The ERTEC 200 has two LBU chip select inputs. One for access to the page configuration register (LBU_CS_R_N) and one to access to the ERTEC 200 memory address space (LBU_CS_M_N). Only one of these chip select signals may be active at a time and it is not allowed to change the chip select during the complete access.

7.6 Host Interrupt Handling:

The ERTEC 200 generates 2 interrupt signals, LBU_IRQ0_N and LBU_IRQ1_N, to the external host. Both interrupts are generated in the IRT switch interrupt controller. Both signals are set by default to Low Active. However, they can also be assigned different parameters in the IRT switch.

Mailbox handling between the ARM946E-S and an external host is possible via the IRT switch interrupt controller. An interrupt request from the ARM946E-S to the host processor is initiated by writing to the Activate_HP_Interrupt register.

An interrupt request from the host processor to the ARM946E-S is initiated by writing to the Activate_SP_Interrupt register.

Both registers can only be written to. Any value can be written.

7.7 Address Assignment of LBU Registers

The LBU registers are **16 bits in width**. These registers can only be written to with words. The LBU paging configuration registers are addressed via the "LBU_CS_R_N" input.

LBU								
Register Name	Offset Address	Address Area	Access	Default	Description			
LBU_P0_RG_L	0x0000	2 bytes	W/R	0x0000	LBU pagex range register 0 Low			
LBU_P0_RG_H	0x0002	2 bytes	W/R	0x0001	LBU pagex range register 0 High			
LBU_P0_OF_L	0x0004	2 bytes	W/R	0x0000	LBU pagex offset register 0 Low			
LBU_P0_OF_H	0x0006	2 bytes	W/R	0x1010	LBU pagex offset register 0 High			
LBU_P0_CFG	0x0008	2 bytes	W/R	0x0000	LBU configuration register 0			
LBU_P1_RG_L	0x0010	2 bytes	W/R	0x0000	LBU pagex range register 1 Low			
LBU_P1_RG_H	0x0012	2 bytes	W/R	0x0010	LBU pagex range register 1 High			
LBU_P1_OF_L	0x0014	2 bytes	W/R	0x0000	LBU pagex offset register 1 Low			
LBU_P1_OF_H	0x0016	2 bytes	2 bytes W/R		LBU pagex offset register 1 High			
LBU_P1_CFG	0x0018	2 bytes	W/R	0x0001	LBU configuration register 1			
LBU_P2_RG_L	0x0020	2 bytes	W/R	0x0000	LBU pagex range register 2 Low			
LBU_P2_RG_H	0x0022	2 bytes	W/R	0x0020	LBU pagex range register 2 High			
LBU_P2_OF_L	0x0024	2 bytes	W/R	0x0000	LBU pagex offset register 2 Low			
LBU_P2_OF_H	0x0026	2 bytes	W/R	0x3000	LBU pagex offset register 2 High			
LBU_P2_CFG	0x0028	2 bytes	W/R	0x0000	LBU configuration register 2			
LBU_P3_RG_L	0x0030	2 bytes	W/R	0x0800	LBU pagex range register 3 Low			
LBU_P3_RG_H	0x0032	2 bytes	W/R	0x0000	LBU pagex range register 3 High			
LBU_P3_OF_L	0x0034	2 bytes	W/R	0x2000	LBU pagex offset register 3 Low			
LBU_P3_OF_H	0x0036	2 bytes	W/R	0x4000	LBU pagex offset register 3 High			
LBU_P3_CFG	0x0038	2 bytes	W/R	0x0001	LBU configuration register 3			

Table 29: Overview of LBU Registers

7.8 LBU Register Description

LBU_P0_ LBU_P1_ LBU_P2	RG_I	W	/ R	Addr.: LBU_CS_R_N +0x00 Addr.: LBU_CS_R_N +0x10 Addr.: LBU_CS_R_N +0x20	Default: 0x0000_0000 Default: 0x0000_0000 Default: 0x0000_0000	
LBU_P3_		W	/ R	Addr.: LBU_CS_R_N +0x30	Default: 0x0000_0800	
Description		Low word of LBU	Page	x_Range_register		
Bit No.	Name	Э	Desc	cription		
150			Lower 16 bits for area setting 15:8 are read/write accessible 7:0 are read-only (value: 00h)			

LBU_P0_	RG_	H W	//R	Addr.: LBU_CS_R_N+0x02	Default: 0x0000_0001 (64k)			
LBU_P1_	RG_	H W	//R	Addr.: LBU_CS_R_N+0x12	Default: 0x0000_0010 (1M)			
LBU_P2_	RG_	H W	//R	Addr.: LBU_CS_R_N+0x22	Default: 0x0000_0020 (2M)			
LBU_P3_	RG_	H W	//R	Addr.: LBU_CS_R_N+0x32	Default: 0x0000_0000 (2 k)			
Description		High word of LBU	Page	ex_Range_register				
Bit No.	Name	Э	Des	Description				
150				Jpper 16 bits for area setting				
				:6 are read-only (value: 000h)				
			5:0 a	are read/write accessible				

LBU_P0_	OF_L	W	/ R	Addr.: LBU_CS_R_N+0x04	Default: 0x0000_0000				
LBU_P1_	OF_L	_ W	/ R	Addr.: LBU_CS_R_N+0x14	Default: 0x0000_0000				
LBU_P2_	OF_L	W	/ R	Addr.: LBU_CS_R_N+0x24	Default: 0x0000_0000				
LBU_P3_	OF_L	W/	/ R	Addr.: LBU_CS_R_N+0x34	Default: 0x0000_2000				
Description		Low word of LBU I	Page	ex_Offset_register					
Bit No.	Name	e	Des	cription					
150			Lower 16 bits for offset setting						
			15:8	:8 are read/write accessible					
			7:0 a	0 are read-only (value: 00h)					

LBU_P0_	OF_H	W/R	Addr.: LBU_CS_R_N+0x06	Default: 0x0000_1010 (KRAM)
LBU_P1_	OF_H	W/R	Addr.: LBU_CS_R_N+0x16	Default: 0x0000_1000 (IRT-Reg)
LBU_P2_	OF_H	W/R	Addr.: LBU_CS_R_N+0x26	Default: 0x0000_3000 (EMIF)
LBU_P3_	OF_H	W/R	Addr.: LBU_CS_R_N+0x36	Default: 0x0000_4000 (Periph.)
Description	High	n word of	LBU Pagex_Offset_register	
Bit No.	Name		Description	
150			Upper 16 bits for offset set	ting

LBU_P0_	CFG	W	/ R	Addr.: LBU_CS_R_N+0x08	Default: 0x0000_0000 (16Bit)
LBU_P1_	CFG	W	/ R	Addr.: LBU_CS_R_N+0x18	Default: 0x0000_0001 (32Bit)
LBU_P2_	CFG	W	/ R	Addr.: LBU_CS_R_N+0x28	Default: 0x0000_0000 (16Bit)
LBU_P3_	CFG	W	/ R	Addr.: LBU_CS_R_N+0x38	Default: 0x0000_0001 (32Bit)
Description		Configuration for t	he in	dividual pages	
Bit No.	Name	e	Des	cription	
151			Res	erved	
0	PAG	E_X_32	1: P	age is a 32-bit page	
			0: P	age is a 16-bit page	

8 DMA-Controller

The ERTEC 200 has a 1-channel DMA controller. This enables data to be transferred without placing an additional load on the ARM946E-S. The following data transfers are possible:

SOURCE	TARGET	SYNCHRONIZATION		
Peripheral (1)	Memory	Source		
Memory	Peripheral(1)	Target		
Peripheral(1)	Peripheral(1)	Source and Target		
Memory	Memory	None		

Table 30: DMA Transfer Modes

Note (1) Due to the single-channel structure, the DMA controller can only service one direction (transmit **or** receive) in serial interfaces. In the case of full-duplex operation, the other direction must be processed via software.

Properties of the DMA controller:

- AHB master interface for the transfer of data
- AHB slave interface for ARM946E-S access to the DMA register
- 4 request inputs for synchronization of the DMA controller with the SPI or UART I/O
- Source and destination address must always be 4-byte aligned (bits 1:0 are ignored)
- A bit width of 8 / 16 / 32 can specified independently for the source or for the target. Here, the bit width can be smaller than the bit width of source or target.
- The block size to be transferred is indicated in number of bytes and must be aligned with the set bus width. That is, if a bus width of 32-bits is assigned as byte count for target or source, only one byte count with 4 bytes aligned can be used.
- Changed-Address-Mode/Hold-Address-Mode must be set individually for source and target.

Synchronization signals of UART and SPI for DMA transfers:

SOURCE	DESCRIPTION
SPI1_SSPRXDMA	RX-FIFO not empty
SPI1_SSPTXDMA	TX-FIFO empty
UART_UARTRXINTR	UART Receive Interrupt
UART_UARTTXINTR	UART Transmit Interrupt

Table 31: I/O Synchronization Signals

Description of the address modes:

Change-Address-Mode:

Increments or decrements the target and/or source address after each transfer (byte, 2 bytes, 4 bytes). The byte counter is incremented or decremented in accordance with the transferred bytes.

Hold-Address-Mode:

In this mode, the target or source addressed is fixed.

> The DMA transfer can be initiated by the software via a DMA control register or by a hardware signal **Software control:**

The transfer can be started or stopped by writing to the **Start/Abort** DMA configuration register bit. **Hardware control:**

The data transfer is controlled by activating the synchronization signal (see table "I/O Synchronization Signals"). As soon as the sync signal is deactivated, the DMA controller stops the transfer. With the next activation of the sync signal, the data transfer is resumed by the DMA controller.

When the DMA transfer is complete, a DMA_INTR interrupt takes place. In the case of a transfer to the UART or SPI, the interrupt takes place after the last byte is transferred.

8.1 DMA Register Address Assignment

The DMA registers are **32 bits in width**. The registers can be written to with 32-bit accesses only. Only the ARM946E-S processor can access the registers.

DMA-Register (Start 0x8000_0000)								
Register Name	Offset Address	Address Area	Access	Default	Description			
DMAC0_SRC_ADDR_REG	0x0000	4 bytes	R/W	0x00000000	DMA Start address register			
DMAC0_DEST_ADDR_REG	0x0004	4 bytes	R/W	0x00000000	DMA target address register			
DMAC0_CONTR_REG	0x0008	4 bytes	R/W	0x00000000	DMA control register			
DMAC0_CONF_REG	0x000C	4 bytes	R/W	0x00000000	DMA configuration register			

Table 32: Overview of DMA Registers

8.2 Description of DMA Registers

(DMAC0S DMA-Sou		•	W/R	Addr.: 0x8000_0000	Default: 0x0000_0000
Description		Start address of t	he data block t	to be transferred by the DMA	controller
Bit No.	Nan	ne	Description		
310	START_ADDRESS Start address Only word addresses are permitted; bits 0 and 1 are ignore			and 1 are ignored	

(DMAC0DestAddrReg)							
DMA-Destination Address			W/R	Addr.: 0x8000_0004	Default: 0x0000_0000		
Description Target address of			t he data block	k to be transferred by the DM	A controller		
Bit No.	Nam	ie	Description				
310	DES	TINATION_ADD	Target address				
	RESS			ddresses are permitted; bits 0	and 1 are ignored		

(DMAC0C	ontrReg)	
Channel (Control (*)	W/R Addr.: 0x8000_0008 Default: 0x0000_0000
Description	To define the dat	a block length.
3124	Reserved	
2321	D_DELAY_EXTENTI ON	Extends the D_Delay in number of 50 MHz clocks (see Channel Config)
2016	S_DELAY_EXTENTI ON	Extends the S_Delay in number of 50 MHz clocks (see Channel Config)
150	BYTE_COUNT	Number of bytes to be transferred. The byte count must be aligned with the set bus width; that is, if a 32-bit byte count is set for the target or source, only one 4-byte aligned byte count can be used.

(DMAC0	ConfReg)					
Channel	Config (*)	W/R Addr.: 0x8000_000C Default: 0x0000_0000				
Description	Control Bits.					
31	START/ABORT	Write: 0: Stop Transfer 1: Start Transfer				
		Read: 0: Transfer completed or stopped				
		1: Transfer not yet complete				
30	Reserved	Reserved				
29	INTR_ENABLE (****)	1: Enable interrupt				
2827	SYNCHRONIZATION	00: None 01: Destination				
		10: Source				
		11: Both				
2624		Reserved				
2322	S ADDR MODE	00: Increment source address				
2022	0_//DDI/_MODE	01: Decrement source address				
		10: Keep source address				
		11: Reserved				
2119	S DMA REQU	000: SSP SSPRXDMA				
		001: SSP_SSPTXDMA				
		010: UART_UARTRXINTR				
		011: UART_UARTTXINTR				
		Rest: not used				
1816	S_WIDTH	000: 8 bit				
		001: 16 bit				
		010: 32 bit				
		Rest: not permitted				
1514	D_ADDR_MODE	00: Increment destination address				
		01: Decrement destination address				
		10: Keep destination address 11: Reserved (affect destination address incrementation)				
1311	D DMA REQU	000: SSP_SSPRXDMA				
1311	D_DIVIA_REQU	000. SSP_SSFRADMA 001: SSP_SSPTXDMA				
		010: UART_UARTRXINTR				
		011: UART UARTTXINTR				
		Rest: Not used				
108	D_WIDTH	000: 8 bit				
		001: 16 bit				
		010: 32 bit				
		Rest: Not permitted				
74	D_DELAY(***)	Write inactive delay counter: The DMA controller puts the specified number				
	_ 、 ,	of clocks (50 MHz) in between two write access operations.				
30	S_DELAY(***)	Read inactive delay counter: The DMA controller puts the specified number				
		of clocks (50 MHz) in between two read access operations.				

*: Byte count and destination width (D_Width) must match up. If Halfword is selected in D_Width, then bit 0 is ignored by byte count (considered to be "0"). If Word is selected in D_Width, then bit 1:0 is ignored by byte count (considered to be "00").

**: The DMA is started with 'Start/Abort = 1' and stopped during operation with 'Start/Abort = 0'. The DMA has to be started by setting bit 31 to '1'. The remaining bits are locked while the DMA is in operation. If the DMA has been stopped, it requires at least 2 clocks (50 MHz) before it can be restarted.

***: With the delay counter, there is a wait time until the next request if the target (UART, SPI 1) is too slow. With the following settings, the specified delay values must be maintained. Otherwise, the DMA will incorrectly process the relevant request signal and will access the corresponding I/O module too soon:

- Synchronization = Destination + D_DMA_Requ = SSP_SSPTXDMA:	⇒ D_Delay >= 4
- Synchronization = Destination + D_DMA_Requ = UART_UARTTXINTR:	\Rightarrow D_Delay >= 5
- Synchronization = Source + S_DMA_Requ = SSP_SSPRXDMA:	\Rightarrow S_Delay >= 0
- Synchronization = Source + S_DMA_Requ = UART_UARTRXINTR:	\Rightarrow S_Delay >= 0

****: When synchronization is used, the interrupt takes place only after the target request has been activated again. When D_Delay is used, the interrupt takes place only after the delay of the last write access.

9 Multiport Ethernet PHY

A 2-fold multiport PHY (Physical Layer Transceiver) that supports the following transfer modes is integrated in the ERTEC 200:

- 100BASE-TX
- 100BASE-FX

These transfer modes are available separately for each port and can be set differently.

The PHY is compatible with the following standards:

- IEEE802.3
- IEEE802.3u
- ANSI X3.263-1995
- ISO/IEC9314

The data interface with the Ethernet MACs takes place via MII. The management interface can be addressed via the MDIO interface (SMI interface). The 25 MHz clock supply is to be provided as follows:

- 25 MHz quartz on the ERTEC 200 pins CLKP_A and CLKP_B or
- 25 MHz clock on the ERTEC 200 pin CLKP_A

In addition to the basic functionalities of the transfer modes 100BASE-TX, and 100BASE-FX, the PHYs also support:

- Auto-negotiation
- Auto-crossing
- Auto-polarity

The following PHY registers can be assigned via the SMI interface:

Register-Nr.	Description	Group
0	Basic-Control-Register	Basic
1	Basic-Status-Register	Basic
2	PHY-Identifier 1	Extended
3	PHY-Identifier 2	Extended
4	Auto Negotiation Advertisement Register	Extended
5	Auto Negotiation Link Partner Ability Register	Extended
6	Auto Negotiation Expansion Register	Extended
7	Next Page Timing Register	Extended
8 - 15	Non-supported registers	
16	Silicon Revision Code	Vendor-specific
17	ModeControl/ Status Register	Vendor-specific
18	Special Modes	Vendor-specific
19	SMII Configuration Status Register	Vendor-specific
20 - 26	Reserved	Vendor-specific
27	Control/Status Indication Register	Vendor-specific
28	Special Internal Testability Register	Vendor-specific
29	Interrupt Source Register	Vendor-specific
30	Interrupt mask register	Vendor-specific
31	PHY Special Control/Status Register	Vendor-specific

For an exact description of the PHY registers, refer to /13/.

During a hardware reset or when leaving the Power Down State ($Px_PHY_ENB = 1$), an initial configuration is set on an internal Config port of the PHY. This configuration can be modified later in the PHY register set. The internal Config port comprises the following parameter assignment, which at present can be permanently set or set via software in the **PHY_CONFIG** system control register.

- P1/2 PHYADDRESS4..0 .
- P1/2 PHYMODE_{2..0}
- P1/2 MIIMODE1..0 •
- P1/2 SMIISOURCESYNC
- •

- Port1 = 00000b: Port2 = 00001b
- see PHY CONFIG in the SYSTEM-CONTROL register area
- MII-Interface (permanently set)
- Normal SMII-Mode see PHY CONFIG in the SYSTEM-CONTROL register area
- P1/2 FXMODE
- P1/2 AUTOMIDIXEN
- P1/2 NPMSGCODE2..0
- P1/2_PHYENABLE
- REG2OUIIN15..0
- **BEG3OUIIN15 0**
- 000b see PHY CONFIG in the SYSTEM-CONTROL register area

see **PHY CONFIG** in the SYSTEM-CONTROL register area

- Default Value for SMII-Register2 (0x0033) (1) Default Value for SMII-Register3 (0x2001) (1)

(1) The values for both registers are composed as follows:

The NEC-OUI is 0x003013 and is interpreted as

1	2	/	3	4								Bit													
		0				()			0)			3	3				3			-	1		Hex format
0	0)	0	0	0	0	0	0	0	0	0	0	1	1	0	0	1	1	0	0	1	0	0	0	OUI format

The PHY-ID is composed of the OUI [24:3] + Manufacturer Model Number[5:0] + Revision Number[3:0]

0 0 0 0	0 0 0 0	0 0 1 1	0 0 1 1	0 0 1 0	0 0 0	UI[24	l:3]				
			Manufacture	r Model Numbe	er[5:0] 0	0	0 0 0 0				
					Rev	ision	Number[3:0]	0	0	0	1
0	0	3	3	2	0		0		1	L	
			REG	30UIIN							

The parameters mentioned above for the internal Config port can be changed in the **PHY** CONFIG register. In addition, the P1 PHY ENB /P2 PHY ENB bits are also activated in this register. The parameters and the enable bit can be transferred with a write access, as the required setup time of 200 ns is ensured by the ERTEC 200 hardware.

With the PHY RES SEL select bit in the PHY CONFIG register, the user can select which reset pin is used for the PHYs:

- PHY RES SEL = 0 **RESET N from ERTEC 200 Power-ON-Reset**
- PHY RES SEL = 1 PHY RESET N from IRT-Switch

If the Power-ON-reset is used, then the PHYs are active after the RESET phase. If the PHY Reset N is used, and the SMI module in the IRT switch has not been activated, then the PHYs remain in the reset state (no power loss from the PHYs).

The HW reset must be present for at least 100µs. In the case of a software reset via the PHY CONFIG register, the reset duration is increased internally to 256µs to stabilize the PLL.

Each PHY has 6 LED outputs that are routed to the GPIOs[7:0] as an alternative function. Four status displays per PHY can be wired to external LEDs. The following displays are available in parallel:

P1/P2 DUPLEX N

•

- (Full) (100BASE-TX/FX Status)
- P1/P2 SPEED N P1/P2 LINK STATUS_N (On/Off)
- P1/P2 ACTIVITY N (No/Receive, No/Transmit, No/Activity)

Power management functionality of the PHYs:

- Hardware-Power-Down: This state is attained via hardware reset. The PHY is switched off, limiting the power loss to approximately 0 mW per PHY. This state is exited when bit P1 PHY ENB / P2 PHY ENB=1. All analog and digital modes are initialized, and the configuration is stored. After this, the PHY register set can be assigned parameters for the first time. Internally, a reset extension of 5.2 ms is initiated in the PHY with P1/P2 PHY ENB=1 to stabilize the PLL and all analog and digital components. The operational readiness is displayed in the PHY STATUS register with bit P1/P2 PWRUPRST=1.
- Software-Power-Down: Activated via the PHY register 0 Basic-Control-Register Bit11. The PHY then goes into the LOW-Power-State. The MDIO interface continues to be active. Activities on the MII interface are suppressed. The power loss in Low-Power-State is approximately 15 mW per PHY. After the Power-Down Mode is complete. the digital modules are reinitialized, but the configuration is not saved again. When the Power Down state is exited, a 256-us reset is generated internally to stabilize the PLL before the PHY is again ready for operation.
- Automatic-Power-Down: Set via the PHY register 17 ModeControl/ Status Register Bit 13. If there is no activity on the MII interface, then the Power Down mode is automatically entered. The power loss in Low-Power-State is approximately 15 mW per PHY. The Low-Power-Mode is exited again with Link-Pulses or Packets on the MII interface. The digital modes are reinitialized, but the configuration is not saved again. When the Power Down

state is exited, a 256- μ s reset is generated internally to stabilize the PLL before the PHY is again ready for operation.

Both PHYs generate one interrupt each, which are placed on interrupt input IRQ9 of the ARM946E-S interrupt controller. The following event trigger the interrupt:

- INT1: Auto-Negotiation Page Received
- INT2: Parallel Detection Fault
- INT3: Auto-Negotiation LP-Acknowledge
- INT4: Link Down
- INT5: Remote Fault Detected
- INT6: Auto-Negotiation complete
- INT7: ENERGY On generated
- INT8: SMII elastic buffer overflow/underflow

The external circuitry of the UTP interface and the 100BASE-FX is presented in the description /xx/.

If the internal PHYs are not used, and external PHYs are connected to the MII interface instead, then all supply voltages must still be routed to the internal PHYs and the reference voltage placed on the EXTRES pin. All other inputs of the TX/FX interface must be connected to GND or VDD.

10 Memory Description

This section presents a detailed description of the memory areas of all integrated function groups.

10.1 Memory Partitioning of the ERTEC 200

The table below lists the AHB masters along with their options for accessing various memory areas.

Start- and Endadress	Seg.	Function Area for ARM9	Function Area for IRTE	Function Area for LBU	Function Area for DMA	
0000 0000	0	Boot ROM(0-8kB) EMIF-SDRAM (0-128MB) EMIF-Memory	Boot ROM(0-8kB) EMIF-SDRAM (0-128MB)	Boot ROM(0-8kB) EMIF-SDRAM (0-128MB)	Boot ROM(0-8kB) EMIF-SDRAM (0-128MB)	
0FFF FFFF	•	(0-64MB) D-TCM(4kB) locked l-Cache (2/4/6kB)	EMIF-Memory (0-64MB)	EMIF-Memory (0-64MB)	EMIF-Memory (0-64MB)	
1000 0000	1	IRT-Switch-	IRT-Switch-	IRT-Switch-	Not used	
1FFF FFFF		Controller	Controller	Controller	Not used	
2000 0000	2					
2FFF FFFF	2	EMIF (SDRAM)	EMIF (SDRAM)	EMIF (SDRAM)	EMIF (SDRAM)	
3000 0000	3	EMIF	EMIF	EMIF	EMIF	
3FFF FFFF	3	(Area: Bank 0-3)	(Area: Bank 0-3)	(Area: Bank 0-3)	(Area: Bank 0-3)	
4000 0000	4	all APB interfaces	Not used	all APB interfaces	all APB interfaces	
4FFF FFFF	4	incl. Boot-ROM	not used	incl. Boot-ROM	incl. Boot-ROM	
5000 0000	5	ARM-ICU	Not used	Not used	Not used	
5FFF FFFF	5		Not used	Not used	Not used	
6000 0000	6	Not used	Not used	Not used	Not used	
6FFF FFFF	0	not used	Not used	Not used	Not used	
7000 0000	7	EMIF-Register	Not used	EMIF-Register	Not used	
7FFF FFFF	'		NOT USED		NUL USEU	
8000 0000	8	DMA	Not used	Not used	Notusod	
8FFF FFFF	o	DIVIA	not used	not used	Not used	
9000 0000	9 - 15	Not used	Not used	Not used	Not used	
FFFF FFFF	5.5	101 000	101 000	101 0000	1101 0000	

Table 33: Partitioning of Memory Areas

The D-TCM with a maximum size of 4 Kbytes can be displayed on any aligned address area. The ARM946E-S then accesses the D-TCM under this address and not the AHB bus. In addition, the locked I-cache of 2/4/6 Kbytes can be displayed on any aligned address area.

Only the ARM946E-S can access both address areas.

IRT accesses to its own KRAM do not use the AHB bus. These accesses are implemented in the IRT switch controller. The KRAM can be addressed starting from the memory area 0x1010_0000. An access in the non-permissible register area is detected by an IRT-internal error signal and not by an AHB acknowledgement time-out error.

10.2 Detailed Memory Description

The table below presents a detailed description of the memory segments. Mirrored segments should not be used for addressing to ensure compatible memory expansion at a later date.

Segment	Contents	Größe	Adressbereich	Beschreibung
0	Boot-ROM (0-8kB) or EMIF-SDRAM (0-128MB) or EMIF-Memory(0-64MB)	256 MB	0000_0000 - 0FFF_FFF	After Reset: Boot-ROM (8kB physical.; memory swap=00b); After memory swap: EMIF-SDRAM (128MB physical.; memory swap=01b); or EMIF memory (64MB physical.; memory swap=10b); Note2
1	IRT switch	256 MB	1000_0000 - 1FFF_FFFF	2 MB physical; - 0-1MB for IRT-Register - 1-2MB for KRAM (64 kByte) Note1
2	EMIF (SDRAM)	256 MB	2000_0000 - 2FFF_FFF	128 MByte When a smaller memory area is used, mirroring over the entire area
3	EMIF IO Bank 0	16 MB	3000_0000 - 30FF_FFFF	When a smaller device is interfaced, mirroring over the entire 16 Mbytes
	EMIF IO Bank 1	16 MB	3100_0000 - 31FF_FFFF	When a smaller device is interfaced, mirroring over the entire 16 Mbytes
	EMIF IO Bank 2	16 MB	3200_0000 - 32FF_FFFF	When a smaller device is interfaced, mirroring over the entire 16 Mbytes
	EMIF IO Bank 3	16 MB	3300_0000 - 33FF_FFFF	When a smaller device is interfaced, mirroring over the entire 16 Mbytes
	Not used		3400_0000 - 3FFF_FFFF	
4	Internal boot ROM	8 kB	4000_0000- 4000_1FFF	8 kByte physical
	Timer 0 - 2	256 Byte	4000_2000 - 4000_20FF	32 Byte physical Note2
	Watchdog	256 Byte	4000_2100 - 4000_21FF	28 Byte physical Note2
	SPI	256 Byte	4000_2200 - 4000_22FF	256 Byte physical
	UART	256 Byte	4000_2300 - 4000_23FF	256 Byte physical
	Reserved	256 Byte	4000_2400 - 4000_24FF	256 Byte physical
	GPIO	256 Byte	4000_2500 - 4000_25FF	32 Byte physical Note2
	System control register block	256 Byte	4000_2600 - 4000_26FF	164 Byte physical System control register block ERTEC 200 Note2
	F counter	256 Byte	4000_2700 - 4000_27FF	8 Byte physical Note2
	Reserviert		4000_2800- 4FFF_FFFF	
Segment	Contents	Größe	Adressbereich	Beschreibung

5	ARM-ICU	256 MB	5000_0000- 5FFF_FFF	ARM – Interrupt-Controller 128 Byte physical Note2
6	Not used	256 MB	6000_0000- 6FFF_FFFF	
7	EMIF-Register	256 MB	7000_0000- 7FFF_FFFF	Steuer-Register for external Memory-Interface 64 Byte physical Note2
8	DMA-Register	256 MB	8000_0000- FFFF_FFF	DMA-Controller 16 Byte physikalisch Note2
9 - 15	Not used	1,75 GB	9000_0000- FFFF_FFF	

Table 34: Detailed Description of Memory Segments

Note:

N =

1. Access to IRT registers and KRAM should only occur in the address areas indicated above (first 2 Mbytes). An access to areas within the 2 Mbytes that are not occupied by the IRT registers and KRAM result in undefined access (acknowledgement timeout). The read or written data are not valid. While the 2-Mbyte areas are mirrored within the 8-Mbyte physical address area, different access types are used:

- ≻
- 2-4-Mbyte area for unaligned consistent 16-bit accesses to IRT 4-6-Mbyte area for unaligned consistent 32-bit accesses to IRT ⊳
- 6-8 Mbytes is not supported (supplies undefined values)
- The 8-Mbyte address area is mirrored 32 times within the 256 Mbytes.

2. Memory areas are mirrored according to the following formula:

Memory size

Physical memory size

Physical memory size is limited to values of 2ⁿ (2, 4, 8, ... 128, 256 etc.)

Example: The physical memory size of the watchdog is 28 bytes. However, 32 bytes are taken for calculating the number of mirrorings N. In this case, the number of mirrorings N = 8. Access to the 4 unused bytes does not result in an acknowledgement timeout, but the read or written values are undefined.

11 Test and Debugging

11.1 ETM9 Embedded Trace Macrocell

An ETM9 module is integrated in the ARM946E-S of the ERTEC 200 to enable the instruction code and data to be traced. The ARM946E-S supplies the ETM module with the signals needed to carry out the trace functions. The ETM9 module is operated by means of the Trace interface or JTAG interface. The trace information is stored in an internal FIFO and forwarded to the debugger via the interface. The ETM interface is available as an alternative function on the LBU port. It is selected via the configuration pins **CONGIG[6, 5, 2] = 101 b**.

11.1.1 Trace Modes

- Normal mode with 4- or 8-bit data width
- Transmission mode
 - Fullrate mode at 50 or 100 MHz (data are accepted via debugger on rising trace clock edge)
 - Halfrate mode at 150 MHz (data are accepted via debugger on both trace clock edges)

11.1.2 Features of the ETM9 Module

In the ERTEC 200, the ETM9 module is <u>medium</u> type.

- It has the following features:
- 4 address comparators
- 2 data comparators with filter function
- 1 trigger input (available externally via GPIO)
- 1 trigger output (available externally via GPIO)
- 8 memory map decoders for decoding the physical address area of the ERTEC 200 (*1)
- 1 sequencer
- 2 counters

•

*1 Supplemental to the ETM0 specification, the 8 MMD regions have been decoded via the hardware:

- SEG0: 0k 4k : Instruction and data access to I-cache
 - SEG0: full : Instruction and data access to BOOT ROM / SDRAM / CS0
- SEG1: 0M 1M : Data access to IRT register
- SEG1: 1M 2M : Instruction and data access to IRT KRAM
- SEG2: 0M 256M : Instruction and data access to external SDRAM
- SEG3: 0k 16k : Instruction and data access to external CS0 (normally Flash)
- SEG3: 16k 32k : Instruction and data access to external CS1 (normally SRAM)
 - SEG4,5,7,8: full : Data access to internal registers (APB, ICU, EMIF, DMA)

For more information on the ETM, refer to **Section 9** of /1/.

11.1.3 ETM9 Registers

The ETM registers are not described in this document because they are handled differently according the ETM version being used.

For a detailed description, refer to /7/.

11.2 Trace Interface

The trace interface is parameterized, enabled, and disabled by means of a connected debugger (e.g. by Lauterbach) on the JTAG interface.

A Trace port is provided in the ERTEC 200 for tracing internal processor states:

- PIPESTA [2:0]
- TRACESYNC
- TRACECLK
- TRACEPKT[7:0]

The PIPESTA[2:0], TRACEPKT[7:0], and TRACESYNC signals are alternative signal pins at the LBU interface. The trace interface is activated with the configuration pins **CONFIG[6,5,2] = 101**. The trace interface can be assigned parameters in the debugger with 4-bit or 8-bit data width. If a data width of 4 bits is assigned, the TRACEPKT[3:0] signals are automatically switched to trace function. If a data width of 8 bits is assigned, the TRACEPKT[7:4] signals are also switched to trace function.

For connectors, pinning, and hardware circuitry for the Trace interface, refer to /7/.

11.3 JTAG Interface

Besides the debug function, the JTAG interface is also used for the boundary scan (see /9/). In addition to the JTAG interface, the DBGREQ and DBGACK signals are available as alternative function pins for debugging. Due to the different debuggers (Hitex or MC types), an internal pull-up resistor at the TRST_N JTAG pin is not included. The user has to ensure the proper circuitry for the utilized debugger .

The standard connector for JTAG interfaces is a 20-pin connector with a pin spacing of 0.1 inch. All JTAG pins and the two additional DBGREQ and DBGACK pins are connected here. The connector is assigned as follows:

Function	Pin No.	Pin No.	Function
Vcc-Sense	1	2	Vcc
TRST_N	3	4	GND
TDI	5	6	GND
TMS	7	8	GND
TCK	9	10	GND
RTCK (#1)	11	12	GND
TDO	13	14	GND
RST (#1)	15	16	GND
DBGREQ	17	18	GND
DBGACK	19	20	GND

Table 35: Pin Assignment of JTAG Interface

For connectors, pinning, signal description, and hardware circuitry for a standard JTAG interface for the <u>multi-ICE</u> <u>debugger</u>, for example, refer to /8/.

In addition to the standard JTAG connector, the pins can also be connected to the Trace interface. For connectors, pinning, and hardware circuitry for JTAG signals at the Trace interface, refer to /7/.

11.4 Debugging via UART

If the UART is not used for user-specific tasks, it can also be used as a debugging interface. An effective realtime debugging is possible if the IRQ interrupt sources of the UARTare mapped to the FIQs with numbers 6 or 7. This enables debugging of interrupt routines.

12 Miscellaneous

12.1 Acronyms/Glossary:

AHB AMBA APB BIST ComDeC DTCM ERTEC EMIF ETM FIQ	AMBA Advanced High Performance Bus (Multimaster, Bursts) Advanced Microcontroller Bus Architecture AMBA Advanced Peripheral Bus (Single master, bursts) Built In Self Test Communication, Development & Certification Data Tightly Coupled Memory Enhanced Real-Time Ethernet Controller External Memory Interface Embedder Trace Macrocell Fast Interrupt Request
GPIO	General Purpose Input/Output
ICE	In Circuit Emulator
ICU	Interrupt Controller Unit
IRQ	Interrupt Request
IRT	Isochronous Real Time
ITCM	Instruction Tightly Coupled Memory
JTAG	Joint Test Action Group
LBU	Local Bus Unit
MAC	Media Access Controller
MII	Media Independent Interface
MPU	Memory Protection Unit
PD	Pull Down
PU	Pull Up
RT	Real Time
SPI	Standard Serial Peripheral Interface
SRT	Soft Real Time
SW	Software
UART	Universal Asynchronous Receiver / Transmitter
WS	Warteschlange (queue)

12.2 References:

- /1/ Technical Reference Manual ARM946E-S REV1 16 February 2001 (DDI 0201A_946ES.PDF);
- /2/ Technical Reference Manual ARM946E-S 16 December 1999 (DDI_ 0165A_9E-S_TRM. PDF);
- AHB PCI Bridge Revision2.5 08 July 2002 (amba2pci rev2.5.pdf); /3/
- /4/
- /5/
- AMBA Specification (Revision 2.0), 1999; ARM ARM Prime CellTM UART (PL010) Technical Reference Manual; ARM ARM Prime CellTM Synchronous Serial Port (PL021) Technical Reference Manual; /6/
- Embedded Trace Macrocell Architecture Specification (ETM_Spec.PDF); /7/
- /8/ Multi-ICE System Design Consideration Applic.-Note 72 (DAI0072A_Multiicedesign-Notes.PDF); IEEE Standard Test Access Port and Boundary-Scan Architecture (1149.1 IEEE Boundary Scan /9/
- 2001.PDF);
- IR35-107-3.pdf /10/
- LeadfreeIR50 60.pdf /11/
- Codeexpl.pdf /12/ /13/
- ERTEC200_PHY_V100.pdf /14/
- EB 200 Manual V1.1.1 (EB200_Manual_V111.PDF); ERTEC200_ERRATA_EN.PDF /15/
- /16/ ERTEC_ARM_ERRATA_INFO.PDF